Course Number & Name: EEL 4310 and EEL5322 - Digital Integrated Circuits Design

Credits and Contact Hours: 3 credits; 3 classes per week of 50 minutes each

Instructor’s or Course Coordinator’s Name: Dr. Scott E. Thompson

Contact info Prof. Scott Thompson
535 Engineering Bldg
846-0320
Office hours: M W F 6th period days of live class
Plus e-learning discussion board (https://lss.at.ufl.edu/)
(plus additional office hours arranged via email thompson@ece.ufl.edu)

TA Kelli Borowski
Specific Cadence help Arun Jawwaji (arun.javvaji@ufl.edu)

Textbook Title, Author, and Year:

Title - Introduction to Microelectronic Fabrication (Required)
Author - Richard C. Jaeger
Publication date and edition - 2nd Edition, Modular Series on Solid State Devices, Volume 5,
Prentice Hall
dISBN Number - 0-201-44494-7

Title - Digital Integrated Circuits, A Design Perspective (Required)
Author - Jan. M. Rabaey, A. Chandrakasan, and B.Nikolic

Computer and Software required: Workstations with CADENCE Design system on campus, off-
campus can use XWindows or X-terminal on a high-speed internet link to UF Campus
Computers, or can use equivalent IC design software

a. Supplemental Material:

Specific Course Information

a. Catalog Description: Fabrication, Layout, Analysis and design of digital and circuits
using MOS Transistors

b. Prerequisites or Co-requisites: Electronics 1 (3308) and Digital Logic (3701C)

c. Required, Elective, or Selected Elective (Table 5-1):

Specific Goals for the Course
a. Specific Outcomes of Instruction:
This course focuses on analysis and design of modern digital circuits. Silicon technology and transistors are introduced and described from a digital point of view, and the performance of various circuits is derived and estimated. CMOS digital circuits will be designed and analyzed. Students will have a semester long team SRAM chip design project using commercial software Cadance. Project will cover advanced topics such as manufacturing variations.

b. Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by this course:
EE2, a, c, e, l, k

Topics to Be Covered

Week 1: Moore’s Law, History and Future of Computing, Chipworks tear down of a mobile computer (iPhone and iPad), Jaeger Chapter 1.

Week 2: Design rules, Chap. 2.1, 2.2 and 2.3 of Rabaey, 1.2, 1.3.1

Week 3: Contacts and Interconnects Chap. 7 Jaeger and handouts. MOS Process Integration Chap. 9 of Jaeger and State of the art CMOS planar and FinFET SOC process flow: 28nm, 20nm, 14nm, 10nm Logic Technologies and advanced layout issues: Optical Proximity correction and Restrictive Design Rules

Week 4-5: What is VLSI, Cadence Design Training, Statistics Review, and Introduction to micro fabrication with emphasis on process variation Chap. 5.1, 5.2, 5.3, 5.4 of Jaeger, plus handouts and Chipworks reverse engineering reports

Week 6-7: CMOS Logic, DRAM, NAND, CMOS image sensor chips fabrication, bit cell or pixel cell, and array architecture Chap. 8.7 of Jaeger and Chapter 2.2 Rabaey plus handouts

Week 8-9: Layout Layers and X-sections Design Rules, Resistance, Capacitance, MOSFET Chap. 4.1 to 4.3 and Chap. 3.3 of Rabaey and 9.2, 9.3 Jaeger

Week 10: MOS Transistors, CMOS Inverters, Chap. 3.3 and Chap. 5 of Rabaey

Week 11: CMOS Inverters, Chap. 5 of Rabaey

Week 12: Combination Logic, Compound Gates, Chap. 6 of Rabaey

Week 13: Transmission Gates, Memory, Chap. 6 and Chap. 12 of Rabaey

Week 14: Memory, Pseudo NMOS, Pass Trans. Logic, Chap. 6 of Rabaey

Week 14: Pre-charge Logic, and Dynamic Logic, Chap. 6 of Rabaey
Week 15: Domino Logic, Logic Comparison, Noise Chap. 6 of Rabaey

• Grading:
  
  70% in Class exams  
  15% Test 1 Friday Sept. 14  
  15% Test 2 Wednesday Oct. 17  
  15% Test 3 Friday Nov. 16  
  
  30% Comprehensive Final Exam as scheduled by college  
  
  5% Homework  
  20% Projects (1,2,3) Final Class Project Due Dec 5  
  
• Test and projects and homework different for EEL 4310 and EEL 5322  
  
  – No exam make-up unless valid excuse. All valid excuses must be approved by the Professor.  
  
  – Final Grading Scale  
  
  • ≥90% → A; ≥86.67% → A-; ≥83.33% → B+; ≥80% → B; ≥76.67% → B-;  
  ≥73.33% → C+; ≥70% → C; ≥66.67% → C-; ≥63.33% → D+; ≥60% → D;  
  ≥56.67% → D-; <56.67% → E  
  
• Attendance: Due to quantity and research nature of material, it is important to make every attempt to attend class or watch all class lectures (when possible).