EEL 3472C
ELECTROMAGNETIC FIELDS AND APPLICATIONS I
Spring 2018

Instructor: Dr. Vladimir A. Rakov, NEB 553
 Tel. 392-4242
 E-mail: rakov@ece.ufl.edu
 http://plaza.ufl.edu/rakov/

Office Hours: M, W, F, 3:00-4:00 p.m., NEB 553

Teaching Assistant: Yiming Li
 Tel. 352-281-6451
 E-mail: brighturan@ufl.edu

Office Hours: T, TH, 3:00-4:00 p.m., LAR 111

3 credits, M, W, F, 7th period (1:55 – 2:45 p.m.)

Room: LAR 330

Website:
http://www.rakov.ece.ufl.edu/teaching/3472.html
EEL 3472C Electromagnetic Fields and Applications I
Spring 2018

<table>
<thead>
<tr>
<th>Course Section</th>
<th>Number of Lectures</th>
<th>HA Due</th>
<th>Test</th>
<th>Chapter(s) in Text (Ulaby)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>1. Transmission Lines</td>
<td>7</td>
<td>01/29</td>
<td>02/02</td>
<td>2</td>
</tr>
<tr>
<td>2. Review of Vector Analysis</td>
<td>4</td>
<td>02/09</td>
<td>02/12</td>
<td>3</td>
</tr>
<tr>
<td>3. Electrostatics</td>
<td>7</td>
<td>02/28</td>
<td>03/02</td>
<td>4</td>
</tr>
<tr>
<td>4. Magnetostatics</td>
<td>5</td>
<td>03/21</td>
<td>03/23</td>
<td>5</td>
</tr>
<tr>
<td>5. Time-Varying Fields</td>
<td>8</td>
<td>04/11</td>
<td>04/13</td>
<td>6, 5.7, 7.5</td>
</tr>
<tr>
<td>6. Electromagnetic Waves</td>
<td>5</td>
<td>04/23</td>
<td>-</td>
<td>7, 8</td>
</tr>
<tr>
<td>Review</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1-8</td>
</tr>
<tr>
<td>Final Exam, Group 30A (LAR 330)</td>
<td>-</td>
<td>-</td>
<td>04/30</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7:30 - 9:30 a.m.</td>
<td>1-8</td>
</tr>
</tbody>
</table>
EEL 3472C Electromagnetic Fields and Applications I

Spring 2018

INTRODUCTION - 1 lecture

1. TRANSMISSION LINES - 7 lectures
 - Transmission line equations (lossless line)
 - Sinusoidal waves
 - Characteristic impedance
 - Reflection and transmission; standing wave
 - Attenuation and dispersion (lossy lines)
 - Non-sinusoidal waves (bounce diagram)

2. REVIEW OF VECTOR ANALYSIS - 4 lectures
 - Vector addition and subtraction
 - Dot and cross products
 - Line and surface integrals
 - Introduction to differential operators
 - Cartesian, cylindrical, and spherical coordinates

3. ELECTROSTATICS - 7 lectures
 - Coulomb's law and electric field intensity
 - The source equation; divergence
- Gauss' law
- Ohm's law
- Electrostatic energy and potential; gradient
- Capacitors
- Boundary condition on the normal electric field
- Laplace's and Poisson's equations; Laplacian
- Method of images

4. MAGNETOSTATICS - 5 lectures
 - Biot-Savart law
 - Curl
 - Magnetic vector potential
 - Ampere's circuital law
 - Magnetic field boundary conditions

5. TIME-VARYING FIELDS - 8 lectures
 - Continuity equation
 - Displacement current
 - Faraday's law
 - Boundary condition on the tangential electric field
 - Inductance
 - Maxwell's equations
 - Skin effect; surface impedance

6. ELECTROMAGNETIC WAVES - 5 lectures
 - Free space wave equation
 - Characteristics of plane waves
 - Polarization
 - Poynting's theorem
 - Reflection at normal incidence

REVIEW – 1 lecture
Tests are given for the first five major sections of the course (Transmission lines, Vector analysis, Electrostatics, Magnetostatics, and Time-varying fields). Tests are graded by TA, and each test accounts for 10% of the overall grade for the course so that all five tests account for 50% of the overall grade. Tests are not returned to students. You will have one week after posting the grades to discuss your grade with TA.

Home assignments are given for each of the six major sections of the course (the five indicated above plus Electromagnetic waves). Home work turned in after 2:00 p.m. on the due date is not accepted. Home work is graded by TA, and each assignment accounts for 3% of the overall grade for the course so that all six home works account for 18% of the overall grade. Solutions of home assignment problems are posted on the course website after the home assignment due date. Home works are returned to students.

Final exam is comprehensive and accounts for 32% of the overall grade for the course. The final exam is graded by TA and reviewed by the instructor. Problems on the final exam are of the same level of difficulty as those on the home assignments and tests. Exams are not returned to students.

\[G = 0.1(T1 + T2 + T3 + T4 + T5) + 0.03(HA1 + HA2 + \ldots + HA6) + 0.32F \]
≥90% → A; ≥86.67% → A-; ≥83.33% → B+; ≥80% → B;

≥76.67% → B-; ≥73.33% → C+; ≥70% → C; ≥66.67% → C-;

≥63.33% → D+; ≥60% → D; ≥56.67% → D-; <56.67% → E