PhD Exam – Electronic Circuits

1. The following two circuits 1A and 1B use ideal op amps with output saturation voltage L+/L- of ±10V. Given an input of \(v_i = 0.2 \times \sin(2\pi \times 1000 \times t) \) V, a sinusoidal waveform of ±0.2V peak and frequency of 1000Hz, find the outputs of the following two circuits with \(R_1 = 1k\Omega \), \(R_2 = 10k\Omega \). Plot their output voltages \(v_{OA} \) and \(v_{OB} \) versus time. Note: the output of Circuit 1A goes to the input of Circuit 1B.

![Circuit 1A and 1B](image)

2. The following circuit consists of two resistors of the same value \(R \) and two capacitors of the same value \(C \). Input signal is \(v_i \) and there are two outputs \(v_{o1} \) and \(v_{o2} \). If \(v_i \) is a single-tone small-signal sinusoidal waveform of frequency \(f \), calculate the two outputs \(v_{o1} \) and \(v_{o2} \). What is the phase difference between \(v_{o1} \) and \(v_{o2} \)? At what frequency \(f \) will the two outputs \(v_{o1} \) and \(v_{o2} \) have equal amplitude?

![Circuit with R and C](image)