1-In the circuit shown below, X represents \(\frac{W}{L} \) ratio of the transistors. **all the transistors are in saturation region.**

![Circuit Diagram]

\[V_{thN} = |V_{thP}| = 0.5V \]
\[X = \frac{W}{L} = 100 \]
\[\mu_n C_{ox} = 2 \mu_p C_{ox} = 200 \mu A / V^2 \]
\[\lambda = \frac{1}{r_o} = 0 \]

a) Find the DC voltage of output nodes (Vo+ or Vo-). (20%)
b) Find the small signal differential gain \(\frac{V_{o+} - V_{o-}}{V_{id}} \). (30%)
c) Find the **minimum and maximum** input common mode voltage (\(V_{CM} \)) so all the transistors remain in saturation region. (50%)
2- In the following circuit, the opamp is ideal and the **initial condition of the capacitor is zero**. When ϕ_s is high (V_H), the switch is closed and when ϕ_s is low (V_L), the switch is open.

![Circuit Diagram]

$$RC = 10^{-9}$$

$$T_s = 10^{-9} = 1\text{nS}$$

a) For a DC input signal of V_{in}, how many cycles of ϕ_s does it take for the output to reach $100V_{in}$? (30%)

b) If the input is $V_{in}=A \sin(\omega_{in}t)$, at what **input frequencies** the output remains zero at the end of each T_s cycle? (70%)