1. You are given the following:
 - 1 active-low button connected to the lowest bit of port 1, which is mapped to address 2000 hex.
 - A timer that has already been configured to trigger an interrupt service routine (ISR) every millisecond. For simplicity, ignore any architecture-specific flags or registers that are typically cleared/set.

Write code for an ISR that debounces the button connected to port 1. The ISR should ignore any button press until a stable value of 0 occurs for 10 milliseconds. In order for software to access the state of the debounced button, the ISR should store the state to memory address 3000 hex. For example, memory address 3000 hex should contain a 1 whenever the button is not pressed and a 0 when the pressed button has been stable for 10 or more milliseconds (i.e., has been debounced).

Show all code for the ISR. Clearly define any memory locations used for variables. List any assumptions, such as memory locations that are initialized at the beginning of execution. Comment the code or show high-level pseudo-code for partial credit.
2. You are given a microprocessor with a 16-bit address bus (A15:0), an 8-bit data bus (D7:0), a read/write input (1=read, 0=write), and an active low DataStrobe (where a rising edge represents valid data). You also are given a rising-edge triggered D flip-flop with a tri-state output that is controlled by an active-high output enable (OE). For this flip flop, the Q output is equal to the D input whenever OE = 1, otherwise Q is high Z. A timing diagram for a write is given below to illustrate the DataStrobe. For a read, assume the microprocessor reads data on the rising edge of DataStrobe.

(a – 40%) Create an 8-bit output port that is redundantly mapped using partial address decoding to addresses 5000 (hex) to 5fff (hex) using the provided D flip-flops and any other logic that you think is necessary.

(b – 50%) Using 4kx4 SRAM devices (i.e., 4k 4-bit words), show the devices along with the gate-level decode circuitry required to place 8k 8-bit words of memory at 6000 (hex) using full address decoding. Assume the SRAM devices have an address input, a read/write input (1=read, 0=write), an active-low chip enable (CE) input, and a 4-bit data port.

(c – 10%) Specify the address range for the 8kx8 memory in part b.