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Abstract. We relate two well-studied methodologies in deductive veri-
fication of operationally modeled sequential programs, namely the use of
inductive invariants and clock functions. We show that the two method-
ologies are equivalent and one can mechanically transform a proof of a
program in one methodology to a proof in the other. Both partial and
total correctness are considered. This mechanical transformation is com-
positional; different parts of a program can be verified using different
methodologies to achieve a complete proof of the entire program. The
equivalence theorems have been mechanically checked by the ACL2 the-
orem prover and we implement automatic tools to carry out the trans-
formation between the two methodologies in ACL2.

1 Background

This paper is concerned with relating strategies for deductive verification of se-
quential programs modeled operationally in some mathematical logic. For oper-
ational models, verifying a program is tantamount to characterizing the “initial”
and “final” states of the machine executing the program and showing that every
“execution” of the program starting from an initial state leaves the machine in
a final state satisfying some desired “postcondition”.

Deductive verification of sequential programs has traditionally used one of
two reasoning strategies, namely the inductive invariant approach [1], and the
clock functions or direct approach [2] respectively. While both the strategies
guarantee correctness, to our knowledge no formal analysis has been performed
on whether the theorems proved using one strategy are in any sense stronger
than the other. However, it has been informally believed that the two strategies
are fundamentally different and incompatible.

This paper analyzes the relation between these two strategies. We show that
the informal beliefs are flawed in the following sense: In a sufficiently expres-
sive logic, a correctness proof of a program in one strategy can be mechanically
transformed into a proof in the other strategy. The result is not mathemati-
cally deep; careful formalization of the question essentially leads to the answer.
But the question has been asked informally so often that we believe a formal
answer is appropriate. Further, this equivalence enables independent verifica-
tion of components of a program to obtain a proof of the composite whole. The



equivalence has been mechanically checked by the ACL2 theorem prover and
such transformation tools implemented in ACL2.

To provide the relevant background, we first summarize the operational ap-
proach to modeling and reasoning about sequential programs, and describe the
two strategies. We then discuss the contributions of this paper in greater detail.
For ease of understanding, we adhere to traditional mathematical notations in
this section. We later show how the concepts are made precise in the ACL2 logic.

1.1 Operational Program Models

Operational semantics involves characterization of program instructions by their
effects on the states of the underlying machine. For simplicity, assume that a
program is a sequence of instructions, and a state of the machine is a tuple
describing the values registers, memory, stack, and so on. For every state s, let
pc(s) and prog(s) denote the values of two special components in state s, the
program counter and the current program respectively. These two components
specify the “next instruction” executed by the machine at state s, which is the
instruction in prog(s) that is pointed to by pc(s).

Meaning is assigned to an instruction by specifying, for every state s and
every instruction i, the effect of executing i on s. This is formalized by a function
effect : S× I → S, where S is the set of states, and I is the set of instructions. If
the instruction is a LOAD its effect might be to push the contents of some specific
variable on the stack and advance the program counter by some specific amount.

A special predicate halting characterizes the final states. A state s of M
is halting if s is poised to execute an instruction i whose effect on s is a no-op, that
is, effect(s, i) = s. Most programming languages provide explicit instructions like
HALT whose effect on every state s is a no-op. In such cases, the machine halts
when the instruction pointed to by the pc is the HALT instruction.

To reason about such operationally modeled programs, it is convenient to
define a “next state function” step : S → S. For every state s in S, the function
step(s) is the state produced as follows. Consider the instruction i in prog(s)
that is pointed to by pc(s). Then step(s) is defined to be effect(s, i). Further, one
defines the following iterated step function:

run(s, n) =
{
s if n = 0
run(step(s), n− 1) otherwise

Program correctness is formalized by two predicates on the set S, namely
a specified precondition pre characterizing the “initial” states, and a desired
postcondition post characterizing the “final” states. In case of a sorting program,
pre might specify that some machine variable contains a list l of integers, and
post might specify that some (possibly the same) machine variable contains a
list l′ of integers that is an ordered permutation of l.

– Partial Correctness: Partial correctness involves showing that if, starting
from a state that satisfies pre, the machine ever reaches a halting state, then
post holds for such a halting state. Nothing is claimed if the machine does



not reach a halting state. Partial correctness can be formally expressed as
the following formula:
∀s, n : pre(s) ∧ halting(run(s, n)) ⇒ post(run(s, n))

– Total Correctness: Total correctness involves showing, in addition to par-
tial correctness, that the machine, starting from a state satisfying pre, even-
tually halts:
∀s : pre(s) ⇒ (∃n : halting(run(s, n)))

1.2 Inductive Invariants

Inductive invariants constitute one strategy for proving the correctness theorems.
The idea is to define a predicate that (i) is implied by the precondition, (ii)
persists along every step, and (iii) implies the postcondition in a halting state.
Thus, predicate inv is defined on the set S of states with the following properties:

1. ∀s : pre(s) ⇒ inv(s),
2. ∀s : inv(s) ⇒ inv(step(s)), and
3. ∀s : inv(s) ∧ halting(s) ⇒ post(s).

Then we can prove that for every state s satisfying inv and for every natural
number n, run(s, n) satisfies inv. This follows from property 2 by induction on
n. The proof of partial correctness then follows from properties 1 and 3.

Total correctness is proved by a “well-foundedness” argument. A well-founded
structure is a pair 〈W,≺〉 where W is a set and ≺ is a partial order on the
elements of W , such that there are no infinitely decreasing chains in W with
respect to ≺. One defines a mapping m : S →W , where 〈W,≺〉 is well-founded,
and proves the following property, in addition to 1, 2, and 3 above.

4. ∀s : inv(s) ∧ ¬halting(s) ⇒ m(step(s)) ≺ m(s).

The termination proof in the total correctness statement now follows from prop-
erties 2 and 4 as follows. Assume that the machine does not reach a halting state
starting from some state s, such that pre(s) holds. By property 2, each state
in the sequence 〈s, step(s), step(step(s)) . . .〉 satisfies inv. Then, by property 4,
the sequence 〈m(s),m(step(s)),m(step(step(s))) . . .〉 forms an infinite descend-
ing chain on W with respect to ≺. However, by well-foundedness, no infinitely
descending chain can exist on W , leading to a contradiction.

An advantage of inductive invariants is that all the conditions involve only
single steps of the program. The proofs are typically dispatched by case analysis
without resorting to induction, once the appropriate inv is defined. However,
the definition of inv is often cumbersome, since by condition 2, inv needs to be
preserved along every step of the execution.

1.3 Clock Functions

A direct approach to proving total correctness is the use of clock functions.
Roughly, the idea is to define a function that maps every state s satisfying pre,
to a natural number that specifies the number of steps required to reach a halting
state from s. Formally, clock : S → IN has the following two properties:



1. ∀s : pre(s) ⇒ halting(run(s, clock(s)))
2. ∀s : pre(s) ⇒ post(run(s, clock(s)))

Total correctness follows from these properties as follows. Termination proof is
obvious, since for every state s satisfying pre, there exists an n, namely clock(s),
such that run(s, n) is halting. Further, since by definition of halting, running
from a halting state does not change the state, the state run(s, clock(s)) uniquely
specifies the halting state reachable from s. By property 2 of clock, the state also
satisfies post, showing correctness.

For specifying partial correctness, one weakens the properties 1 and 2 above
so that run(s, clock(s)) satisfies halting and post only if a halting state is reachable
from s. This can be achieved by adding the predicate (∃n : halting(run(s, n)) as
a conjunct in the antecedent of each property. The partial correctness theorem
follows using exactly the correctness argument for total correctness.

Proofs involving clock functions typically require induction on the length of
the execution. However, the definition of clock follows the control flow of the
program [2, 3]; a user familiar with the branches and loops of a program can
often define clock with relative ease, and the definition of clock provides a hint
on the induction to be used in proving the correctness theorems.

1.4 Contributions of this Paper

Both inductive invariants and clock functions guarantee the same correctness
theorems. However, the arguments used by the two strategies are different. The
question, then, arises whether the theorems proved using one strategy are in any
sense stronger than the other.

Why does one suspect that one strategy might be stronger than the other?
Consider the total correctness proofs using the two strategies. In the clock func-
tions approach, the function clock(s) gives for every state s satisfying pre, the
exact number of steps required to reach a halting state from s. One normally
defines clock so that clock(s) is the minimum number of steps required to reach
a halting state from s. But that number is a precise characterization of the time
complexity of the program! The inductive invariant proof, on the other hand,
does not appear to require reasoning about time complexity, although it requires
showing that the program eventually terminates.

Use of inductive invariants is a popular method for program verification.
However, in the presence of a formally defined operational semantics, clock func-
tions have been found useful. This method has been widely used in Boyer-Moore
community, especially in ACL2 and its predecessor, Nqthm, to verify specialized
architectures or machine codes [4–6]. Note that relatively few researchers out-
side this community have used clock functions; the reason is that relatively few
researchers have pursued code-level mechanized formal proofs with respect to
operational semantics. Operational semantics has been largely used by Nqthm
and ACL2 since it permits the use of a general-purpose theorem prover for
first-order recursive functions. Criticisms for clock functions have been typically
expressed informally in conference question-answer sessions for the same reason:



given that no extant system supported code proofs for the specialized language
presented, there was no motivation for comparing clock functions to other styles,
but there was a nagging feeling that the approach required more work, namely
reasoning about complexity when “merely” a correctness result is desired. The
absence of written criticism of clock functions and the presence of this “nagging
feeling” have been confirmed by an extensive literature search and discussions
with authors of other theorem provers.

In this paper, our goal is to clarify relations between inductive invariants and
clock functions. We show by mechanical proof that in the context of program
verification, the two styles are equivalent in the sense that a proof in one style
in one can be mechanically transformed into a proof in the other.

Besides showing the logical connection between the two proof styles, the
equivalence theorems have an important practical implication: our results en-
able mechanical composition of proofs of different components of a program
verified using different styles. Notwithstanding the logical equivalence of the two
strategies as shown in this paper, one style might be simpler or more natural to
derive “from scratch” than the other in a specific context. As an example, con-
sider two procedures: (1) initialization of a Binary Search Tree (BST), and (2)
insertion of a sequence of elements in an already initialized BST. Assume that in
either case the desired postcondition specifies that a BST structure is produced.
A typical approach for verifying (1) is to define a clock that specifies the number
of steps required by the initialization procedure, and then prove the result by
symbolic simulation; definition of a sufficient inductive invariant is cumbersome
and requires a detailed understanding of the semantics of the different instruc-
tions. On the other hand, an inductive invariant proof might be more natural
for verifying (2), by showing that each insertion in the sequence preserves the
tree structure. However, traditional verification of a sequential composition of
the two procedures (initialization followed by insertion) has had to adhere to a
single style for both the procedures, often making proofs awkward and difficult.
The results of this paper now allow verification of each component in the style
most suitable for the component alone, by a trivial and well-known observation
that clock functions can be naturally composed over different components.

Our equivalence theorems have been mechanically checked by the ACL2 the-
orem prover. Note that ACL2 (or indeed, any theorem prover) is not critical
for proving the equivalence. ACL2 is used merely as a mechanized formal logic
in deriving our proofs. However, since ACL2 routinely uses both strategies to
verify operationally modeled programs, our theorems and the consequent proof
transformation tools we implement, are of practical value in simplifying ACL2
proofs of large-scale programs. Our work can be easily adapted to any other
mechanized logic like HOL [7] or PVS [8], that is expressive enough to specify
arbitrary first-order formulas, and analogous tools for proof transformation can
be implemented for theorem provers in such logics.

The remainder of this paper is organized as follows. In Section 2, we briefly
discuss rudiments of the ACL2 logic. In Section 3, we formalize the two proof
styles in ACL2 and discuss the mechanical proof of their equivalence. In Sec-



tion 4, we elaborate the framework to allow composition of proof strategies. In
Section 5, we describe two macros for translation between proof strategies in
ACL2. Finally, in Section 6, we discuss related work and provide some conclud-
ing remarks. The ACL2 proof scripts for all the theorems described here are
available from the home page of the first author and will be distributed with
the next version of the theorem prover. Note that although we adhere to the
formal notation of ACL2 in the description of our theorems, this paper assumes
no significant previous exposure to the ACL2 logic, and only a basic familiarity
with Lisp.

2 The ACL2 Logic

In this section, we briefly describe the ACL2 logic. This provides a formal nota-
tional and reasoning framework to be used in the rest of the paper. Full details
of the ACL2 logic and its theorem proving engine can be found in [9, 10].

ACL2 is essentially a first-order logic of recursive functions. The inference
rules constitute propositional calculus with equality and instantiation, and well-
founded induction up to ε0. The language is an applicative subset of Common
Lisp; instead of writing f(a) as the application of function f to argument a, one
writes (f a). Terms are used instead of formulas. For example, the term:

(implies (natp i) (equal (nth i (update-nth i v l)) v))

represents a basic fact about list processing in the ACL2 syntax. The syntax is
quantifier-free; formulas may be thought of as universally quantified over all free
variables. The term above specifies the statement: “For all i, v and l, if i is a
natural number, then the i-th element of the list obtained by updating the i-th
element of l by v is v.”

ACL2 provides axioms to reason about Lisp functions. For example, the
following axiom specifies that the function car applied to the cons of two argu-
ments, returns the first argument of cons.

Axiom:
(equal (car (cons x y)) x)

Theorems can be proved for axiomatically defined functions in the ACL2 system.
Theorems are proved by the defthm command. For example, the command:

(defthm car-cons-for-2 (equal (car (cons x 2)) x))

directs the theorem prover to prove that for every x, the output of the function
car applied to the cons of x and the constant 2, returns x.

ACL2 provides three extension principles that allow the user to introduce
new function symbols and axioms about them. The extension principles consti-
tute (i) the definitional principle to introduce total functions, (ii) the encapsula-
tion principle to introduce constrained functions, and (iii) the defchoose principle
to introduce Skolem functions. We briefly sketch these principles here. See [11]
for a detailed description of these principles along with soundness arguments.



Definitional Principle: The definitional principle allows the user to define
new total functions in the logic. For example, the following form defines the
factorial function fact in ACL2.

(defun fact (n) (if (zp n) 1 (* n (fact (- n 1)))))

The effect is to extend the logic by the following definitional axiom:

Definitional Axiom:
(fact n) = (if (zp n) 1 (* n (fact (- n 1))))

Here (zp n) returns nil if n is a positive natural number, and otherwise T.
To ensure consistency, ACL2 must prove that the recursion terminates [12]. In
particular, one must exhibit a “measure”m that maps the set of arguments in the
function to some set W , where 〈W,≺〉 forms a well-founded structure. The proof
obligation, then, is to show that on every recursive call, this measure “decreases”
according to relation ≺. ACL2 axiomatizes a specific well-founded structure,
namely the set of ordinals below ε0: membership in this set is recognized by an
axiomatically defined predicate e0-ordinalp, and a binary relation e0-ord-< is
axiomatized in the logic as an irreflexive partial order in the set.

Encapsulation Principle: The encapsulation principle allows the extension
of the ACL2 logic with partially defined constrained functions. For example, the
command below introduces a function symbol foo with the constraint that (foo
n) is a natural number.

(encapsulate (((foo *) => *))

(local (defun foo (n) 1))

(defthm foo-returns-natural (natp (foo n))))

Consistency is ensured by showing that some (total) function exists satisfying
the alleged constraints. In this case, the constant function that always returns
1 serves as such “witness”. The effect is to extend the logic by the following en-
capsulation axiom corresponding to the constraints. Notice that the axiom does
not specify the value of the function for every input.

Encapsulation Axiom:
(natp (foo n))

For a constrained function f the only axioms known are the constraints. There-
fore, any theorem proved about f is also valid for a function f ′ that also satisfies
the constraints. More precisely, call the conjunction of the constraints on f the
formula φ. For any formula ψ let ψ̂ be the formula obtained by replacing the
function symbol f by the function symbol f ′. Then, a derived rule of infer-
ence, functional instantiation specifies that for any theorem θ one can derive
the theorem θ̂ provided one can prove φ̂ as a theorem. In the example, since
the constant 10 satisfies the constraint for foo, if (bar (foo n)) is provable for
some function bar, functional instantiation can be used to prove (bar 10).



Defchoose Principle: The defchoose principle allows introduction of Skolem
functions in ACL2. To understand this principle, assume that a function symbol
P of two arguments has been introduced in the ACL2 logic. Then the form:

(defchoose exists-y-witness y (x) (P x y))

extends the logic by the following axiom:

Defchoose Axiom:
(implies (P x y) (P x (exists-y-witness x)))

The axiom states that if there exists some y such that (P x y) holds, then
(exists-y-witness x) returns such a y. Nothing is claimed about the return
value of (exists-y-witness x) if there exists no such y. This provides the
power of first-order quantification in the logic. For example, we can define a
function exists-y such that (exists-y x) is true if and only if there exists
some y satisfying (P x y). Notice that the theorem exists-y-suff below is an
easy consequence of the defchoose and definitional principles.

(defun exists-y (x) (P x (exists-y-witness x)))
(defthm exists-y-suff (implies (P x y) (exists-y x)))

ACL2 provides a construct defun-sk that makes use of the defchoose principle
to introduce explicit quantification. For example, the form:

(defun-sk exists-y (x) (exists y (P x y)))

is merely an abbreviation for the following forms:

(defchoose exists-y-witness y (x) (P x y))
(defun exists-y (x) (P x (exists-y-witness x)))
(defthm exists-y-suff (implies (P x y) (exists-y x)))

Thus (exists-y x) can be thought of specifying as the first-order formula:
(∃y : (P x y)). Further, defun-sk supports universal quantification forall
by exploiting the duality between existential and universal quantification.

3 Proof Strategies

Operational semantics have been used in ACL2 (and other theorem provers) for
modeling complex programs in practical systems. For example, formal models
of programs in the JavaTM Virtual Machine (JVM) have been formalized in
ACL2 [3, 13]. Operational models accurately reflecting the details of practical
computing systems are elaborate and complex; however such elaborations are
not of our concern in this paper. For this presentation, we assume that a state
transition function step of a single argument has been defined in the logic, pos-
sibly following the approach described in Section 1.1, which, given the “current
state” of the underlying machine, returns the “next state”. We also assume the
existence of unary predicates pre and post specifying the preconditions and
postconditions respectively, and the predicate halting below specifying termi-
nation.



(defun halting (s) (equal s (step s)))

We now formalize the inductive invariant and clock function proofs in this frame-
work. The theorems we describe here are straightforward translations of our de-
scriptions in Sections 1.2 and 1.3. In particular, an inductive invariant proof of
partial correctness constitutes the following theorems for some function inv.

(defthm pre-implies-inv (implies (pre s) (inv s)))
(defthm inv-persists (implies (inv s) (inv (step s))))
(defthm inv-implies-post
(implies (and (inv s) (halting s)) (post s)))

A total correctness proof also requires a “measure function” m and the following
theorems:1

(defthm m-is-ordinal (e0-ordinalp (m s)))
(defthm m-decreases
(implies (and (inv s) (not (halting s)))

(e0-ord-< (m (step s)) (m s))))

Analogously, a clock function proof in the logic comprises a definition of the func-
tion clock and theorems that express an ACL2 formalization of our discussions
in Section 1.3. A total correctness proof constitutes the following theorems:

(defthm clock-run-is-halting
(implies (pre s) (halting (run s (clock s)))))

(defthm clock-run-is-post
(implies (pre s) (post (run s (clock s)))))

where the function run is simply the iterated application of step as defined
below:

(defun run (s n) (if (zp n) s (run (step s) (- n 1))))

Finally, a partial correctness theorem is the “weakening” of the above theorems,
requiring them to hold only if there exists a halting state reachable from s.

(defthm clock-run-is-halting
(implies (and (pre s) (halting (run s n)))

(halting (run s (clock s)))))
(defthm clock-run-is-post
(implies (and (pre s) (halting (run s n)))

(post (run s (clock s)))))

To prove equivalence between the two proof styles we use the encapsulation prin-
ciple; that is, we encapsulate function symbols step, inv, m, clock, constrained
to satisfy the corresponding theorems, and show that the constraints associ-
ated with inductive invariants can be derived from the constraints associated
with clock functions and vice-versa. In Section 5, we will use these generic proofs
to implement tools to translate proofs in one style to the other.
1 We have used the set of ordinals below ε0 with the relation e0-ord-< instead of a

generic well-founded structure 〈W,≺〉, since this is the only well-founded set axiomat-
ically defined in ACL2. However, the structure of the ordinals is of no consequence
here, and our proofs can be translated in terms of any well-founded structures.



3.1 Equivalence Theorems

To obtain a clock function proof from inductive invariants we will define a clock
that “counts” the number of steps until a halting state is reached. Recall from
our discussions in Section 1.2 that if inv is an inductive invariant that holds
for some state s then inv holds for all states reachable from s. In ACL2, such
a statement is formalized by the theorem inv-run below and can be proved by
induction on n.

(defthm inv-run (implies (inv s) (inv (run s n))))

Hence if clock can be defined to count the number of steps to halting, then the
obligations for a clock function proof will follow from the properties of inductive
invariants, in particular, pre-implies-inv and inv-implies-post. For total
correctness, the following recursive definition provides such a count.

(defun clock (s)
(if (or (not (inv s)) (halting s)) 0
(+ 1 (clock (step s)))))

The crucial observation is that the function clock above is admissible to the
ACL2 logic under the definitional principle. The recursion is justified by the
theorems provided by the termination proofs in the inductive invariants ap-
proach, namely, that there exists a “measure”, in this case m, that maps the
arguments of clock to some well-founded set (ordinals) and decreases (accord-
ing to e0-ord-<) in the recursive call.

The situation is a bit more subtle for partial correctness, since there may be
no such measure. In this case, therefore, we use the defchoose principle to define
the appropriate clock as follows:

(defun-sk exists-pre-state (s)
(exists (init i j)

(and (pre init) (natp i) (natp j) (equal s (run init i))
(halting (run init j))))

(defun clock (s)
(if (exists-pre-state s)

(mv-let (init i j) (exists-pre-state-witness s)
(nfix (- j i)))

0))

The function nfix above is the identity function if its argument is a natural
number; otherwise it returns 0. The function clock can be interpreted as follows.
If there is a state init satisfying pre and numbers i and j such that s is
reachable from init in i steps and a halting state in j steps, then clock
returns (- j i); otherwise it returns 0. But if s is indeed reachable from some
state satisfying pre, and a halting state is reachable from s, then (- j i)
represents the number of steps to reach a halting state from s. Thus in this
case the proof obligations for clock functions follow from the inductive invariants
constraints analogous to total correctness. The return value of 0 is arbitrary when
no halting state is reachable from s, and can be replaced by any value.



To obtain an inductive invariant proof from clock functions, we define the
predicate inv expressing the following property: A state s satisfies inv if and only
if s is reachable from some state init satisfying pre. Notice that the obligations
pre-implies-inv and inv-persists are trivial for such a predicate. Further,
the clock functions proofs guarantee that a halting state reachable from some
pre state must also satisfy post: Recall that the theorem clock-run-is-post
guarantees that for every state s satisfying pre, the halting state (run s
(clock s)) reached (for partial correctness under the hypothesis that some
halting state is reachable) from s must satisfy post. Since by definition of
halting, stepping from a halting state does not change the state, it follows
that any halting state reachable from s must satisfy post. We formalize this
using defchoose principle as follows:

(defun-sk inv (s)
(exists (init n)

(and (pre init) (natp n) (equal s (run init n)))))

For total correctness, we define the measure m by determining the number of
steps to reach the first halting state:

(defun m-aux (s i clk)
(if (or (halting s) (>= i clk) (not (natp i)) (not (natp clk)))

(nfix i)
(m-aux (step s) (+ i 1) clk)))

(defun m (s) (m-aux s 0 (clock s)))

The function m returns a natural number (and hence an ordinal). Further, for
any state s reachable from some pre state init, if s is not halting, then (m
(step s)) is exactly 1 less than (m s), since m merely counts the number of
steps to reach the first halting state. Hence m decreases along a step, justifying
termination.

4 Verifying Program Components

We now show how to generalize our framework to allow different components of
a program to be verified using different strategies. The thorny issue in verifying
components of a program separately arises from the use of the predicate halting
in the framework. Recall that the predicate halting specifies termination in
a very strong sense, specifying that (step s) must be equal to s! However,
when a program completes a specific procedure, it merely returns control to the
calling procedure. Our verification framework is modified as follows in order to
be meaningful for verification of program components.

1. In clock functions, for a state s poised to execute a program component of
interest, (clock s) must precisely characterize the number of steps from
s to the “corresponding” exit.

2. In inductive invariants, inv needs to “persist” only along the steps which
execute the instructions in the component of interest.



To formalize this, we introduce a new predicate external to indicate the “exit”
of the program control from the component of interest, and modify the proof
obligations for each style. For technical reasons, we first restrict the predicate
pre so that pre states also do not satisfy external:

(defthm pre-not-external (implies (pre s) (not (external s))))

The restriction, though introduced for technical reasons, is natural, as the subse-
quent discussions will show. We now “strengthen” the clock functions strategy,
so that clock specifies the minimum number of steps to reach an external
state. This is achieved by adding the following constraints to clock.

(defthm clock-is-natural (natp (clock s)))
(defthm clock-is-minimal
(implies (and (pre s) (natp n) (external (run s n)))

(<= (clock s) n)))

These constraints, along with those described in Section 3 modified to use
external instead of halting, comprise the clock function proof of an individual
component. Notice that (clock s) now characterizes the number of steps to
reach the first external state from s. A casual reader might complain that this
is not general enough to characterize proofs of complicated program components
like recursive procedures. After all, if external specifies the return from a proce-
dure, then for a state s poised to invoke a recursive procedure, the first external
state reached from s does not represent the “corresponding” return! However,
notice that external can be an arbitrary function of state; for example, a legit-
imate definition of external for a recursive procedure is that pc points to the
instruction after the return and the stack of recursive calls is empty.

To capture the notion of first external state in the inductive invariants
framework, we first attach the constraint that inv does not hold for external
states. The intuition, then, is that inv should hold for every state starting from a
pre state “until” an external state is encountered. We can then decide if (step
s) is the first external state, by checking if both (inv s) and (external (step
s)) hold. The proof obligations for inductive invariants are modified as follows:

(defthm inv-persists
(implies (and (inv s) (not (external (step s)))) (inv (step s))))

(defthm inv-implies-post
(implies (and (inv s) (external (step s))) (post (step s))))

(defthm m-decreases
(implies (and (inv s) (not (external (step s))))

(e0-ord-< (m (step s)) (m s))))

We have surveyed several proofs of system models, including JVM proofs in
ACL2 [3]. For all non-trivial programs, the verification has been decomposed
into “component proofs”, and the proof of each component could always be
described in terms of the frameworks above.

In this generalized framework again, one can derive the proof obligations
in one approach from a proof in the other. Space does not permit a thorough
discussion of the generalized equivalence proofs, but the informal intuition is the



same as in Section 3. The complete ACL2 script for the proof of this equivalence
is available to the interested reader from the web-page of the first author.

An immediate nice consequence of the generalized equivalence results is the
capability of mechanically composing proofs of different components of a pro-
gram obtained using different styles into a proof of the complete program. Con-
sider, for example, sequential composition, that is, a program composed of two
sequential code blocks A and B. An important, though trivial, observation about
clock functions is that when two blocks of code are sequentially executed, the
clock for the composite program is given by summing the clocks for each com-
ponent. Thus if clock-A and clock-B are used in deriving clock function proofs
of A and B respectively, then the composite clock is as given below:

(defun clock (s) (+ (clock-A s) (clock-B (run s (clock-A s)))))

More involved and complicated compositions involving branches, loops, and re-
cursion are possible and can be built out of sequential compositions.

5 Switching Proof Strategies

Since the equivalence theorems have been proved using the encapsulation princi-
ple, functional instantiation can be used to automatically transform proofs from
one style to another. Assume that for a specific program modeled by the “step
function” c-step, and functions c-pre, c-external and c-post, an inductive
invariant proof has been constructed for total correctness by introducing some
invariant predicate c-inv and measure c-m. The following directive then proves
the equivalent of clock-run-is-post for the concrete system.

(defthm c-run-post
(implies (c-pre s) (c-post (c-run s (c-clock s))))
:hints ((‘‘Goal’’:use ((:functional-instance clock-is-post

(inv c-inv) (pre c-pre) ....)))))

Thus c-run-post is proved by instantiating the “abstract” functions in theorem
clock-run-is-post with the “concrete” functions provided. Recall that to use
functional instantiation, ACL2 must prove that the concrete functions, namely
c-pre, c-step, etc., satisfy the constraints imposed by the abstract counterparts.
But such constraints are exactly the proof obligations for inductive invariants,
which have been already dispatched for the concrete functions.

We have developed two macros inv-to-clock and clock-to-inv to trans-
form proofs from one strategy to another, along with basic tools for automatic
composition of sequential blocks. While the actual implementation is more elab-
orate, the basic approach is to automatically generate “concrete” theorems like
the one above and prove them by functionally instantiating the abstract proofs.

6 Conclusion

Operational semantics for modeling programs was proposed by McCarthy [1].
The inductive invariants framework is often regarded as the “classical approach”



in formal verification of programs. Numerous operational system models have
since been mechanically verified using inductive invariants in theorem provers
like ACL2 [9, 10], HOL [7], and PVS [8], and tools implemented to facilitate such
proofs. On the other hand, in the presence of operational models, especially in
Boyer-Moore theorem provers, clock functions have found greater success, at
least for total correctness proofs. Similar proofs have been done using other
theorem provers too, though less frequently [14].

We do not advocate one proof style over another. Our goal is to allow the
possibility of going “back and forth” between the two styles; thus a program
component can be verified using the strategy that is natural to the component,
independent of other components. This is particularly important in theorem
proving, where a user needs to guide the theorem prover in the proof search.
Avoiding the necessity to adhere to a monolithic strategy solely for composition
makes the user-dependent aspect of theorem proving simpler and more palat-
able. Note however, that the definition of clock becomes complicated when
proofs of a number of components are composed. This complication is of no
consequence for correctness; however, to reason about efficiency it is imperative
to obtain a “simpler” clock. Our work does not address that issue. For refer-
ence, Golden [private communication] uses the simplification engine of ACL2 to
produce simpler clocks, which can provide effective solutions to such concerns.

Our techniques are applicable to operational models alone. Another approach
called denotational semantics [15–17] models programs in terms of transforma-
tion of predicates rather than states as we described. Our framework cannot be
directly applied to that approach. Indeed, the notion of invariants we use is tied
to an operational view, and cannot be formally reconciled with the denotational
approach without an extra-logical verification condition generator. However, [18]
gives a way of proving partial correctness using inductive invariants incurring
exactly the proof obligations for a denotational approach. Consequently, this
work shows that clock functions can be derived using the same proof obligations
as well. But operational models are requisites for both results.

Our work also emphasizes the power of quantification in ACL2. The expres-
siveness of quantification has gone largely unnoticed in ACL2, the focus being
on “constructive” definitions using recursive equations. The chief reasons for this
focus are executability, and amenability for induction. However, in practical ver-
ification, it is useful to be able to reason about a generic model of which different
concrete systems are “merely” instantiations. Quantifiers are useful for reasoning
about generic models. For example, for some state s, assume we want to consider
the property of “some state p from which s is reachable”. It is then convenient
to posit that “some such p exists”, and use the witness as the specific p to
reason about. We and others have found this convenient in diverse contexts, in
formalizing weakest precondition, and reasoning about pipelined machines [19].
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