
A Mechanical Analysis of Program Verification Strategies

Sandip Ray (sandip@cs.utexas.edu)
Department of Computer Sciences, The Unversity of Texas at Austin
Austin, TX 78712
http://www.cs.utexas.edu/users/sandip

Warren A. Hunt Jr. (hunt@cs.utexas.edu)
Department of Computer Sciences, The Unversity of Texas at Austin
Austin, TX 78712
http://www.cs.utexas.edu/users/hunt

John Matthews (matthews@galois.com)
Galois Inc.
Beaverton, OR 97005.
http://web.cecs.pdx.edu/∼jmatthew

J Strother Moore (moore@cs.utexas.edu)
Department of Computer Sciences, The Unversity of Texas at Austin
Austin, TX 78712
http://www.cs.utexas.edu/users/moore

January 5, 2008

Abstract.
We analyze three proof strategies commonly used in deductive verification of

deterministic sequential programs formalized with operational semantics. The strate-
gies are: (i) stepwise invariants, (ii) clock functions, and (iii) inductive assertions.
We show how to formalize the strategies in the logic of the ACL2 theorem prover.
Based on our formalization, we prove that each strategy is both sound and complete.
The completeness result implies that given any proof of correctness of a sequential
program one can derive a proof in each of the above strategies. The soundness and
completeness theorems have been mechanically checked with ACL2.

Keywords: inductive assertions, invariants, partial correctness, theorem proving,
total correctness

1. Introduction

Proving the correctness of a program entails showing that if the pro-
gram is initiated from a machine state satisfying a certain precondition
then the state on termination satisfies some desired postcondition. Pro-
gram verification has arguably been one of the most fertile application
areas of formal methods, and there is a rich body of works (Gold-
stein and von Neumann, 1961; Turing, 1949; McCarthy, 1962; Floyd,
1967; Hoare, 1969; Manna, 1969; Dijkstra, 1975) developing mathemat-
ical theories for reasoning about sequential programs. In mechanical

c© 2008 Kluwer Academic Publishers. Printed in the Netherlands.

proofs.tex; 5/01/2008; 22:12; p.1



2

theorem proving, one of the central research thrusts is to mechanize
and automate such reasoning (Boyer and Moore, 1979; Gordon and
Melham, 1993; Owre et al., 1992; Bertot and Castéran, 2004).

In this paper, we analyze proof strategies for deductive verification of
deterministic sequential programs. We consider programs modeled with
operational semantics. In this approach, the semantics of the program-
ming language is formalized by an interpreter that describes the effect
of each instruction on the underlying machine state.1 We consider three
commonly used proof strategies, namely (i) the use of stepwise invari-
ants, (ii) the application of clock functions (Hunt, 1994; Bevier et al.,
1989; Boyer and Moore, 1996), and (iii) reasoning based on inductive
assertions attached to a program at cutpoints (Floyd, 1967; Hoare,
1969; King, 1969; Manna, 1969). We present formalizations of these
strategies in the logic of the ACL2 theorem prover (Kaufmann et al.,
2000), and mechanically derive relations between them.

In spite of the obvious importance of mathematical theories under-
lying program correctness, there has been relatively little research on
analyzing the expressive power of such theories.2 In particular, we have
found few published works on mechanical analysis comparing different
strategies used in verifying programs based on operational semantics.
However, it has been informally believed that the logical guarantees
provided by the strategies are different.

Our work shows that such beliefs are flawed. In particular, we prove
that each of the three strategies above is both sound and complete.
By complete we mean that given any correctness proof of a sequential
program in a sufficiently expressive logic, we can derive the proof obli-
gations involved in each of the above strategies. In fact, we show how
to derive such obligations mechanically. These results hold for both
partial and total correctness proofs. The soundness and completeness
results have been proven with ACL2, and we have implemented trans-
lation routines (as Lisp macros) to translate program proofs between
the strategies. The results themselves are not mathematically deep; a
careful formalization of the strategies essentially leads to the results.

1 We use “operational semantics” to denote the semantics derived from the defi-
nition of a formal interpreter in a mathematical logic. This terminology is common
in program verification, in particular in mechanical theorem proving. However, as
pointed out by a reviewer, this usage is somewhat dated among programming lan-
guage communities, where “operational semantics” now refers to a style of specifying
language semantics through inductively defined relations and functions over the
program syntax. In current programming language terminology, our approach might
more appropriately be referred to as “abstract machine semantics”.

2 One notable exception is the Hoare logic. There has been significant work on
analysis of soundness and completeness of Hoare axioms for various programming
language constructs. See Section 2.

proofs.tex; 5/01/2008; 22:12; p.2



3

Nevertheless, our approach clarifies the workings of the different strate-
gies to the practitioners of program verification: without the requisite
formalization, it is easy to accept apparently reasonable but flawed
notions of program correctness. We discuss this point while explaining
the implications of our work in Section 7.

Preliminary versions of some of the results presented in this paper
have appeared in previous conference papers of the individual authors.
Moore (2003a) constructs stepwise invariants from partial correctness
proofs based on inductive assertions. Matthews and Vroon (2004) show
how to define a clock function from an assertional termination proof.
Ray and Moore (2004) show that stepwise invariants and clock func-
tions are interchangeable for both partial and total correctness proofs.
Matthews et al. (2006) construct clock functions from inductive asser-
tions. All the previous results were discovered during our quest for an
effective mechanism for applying inductive assertions on operational
models. This paper unifies and substantially extends the scope of these
previous results, and clarifies the theoretical underpinnings.

The proof strategies were formalized in the logic of the ACL2 theo-
rem prover and all the theorems described here have been mechanically
proven with ACL2. ACL2 is a theorem prover for an untyped first-order
logic of total recursive functions; the inference rules constitute propo-
sitional calculus, equality, instantiation, and well-founded induction up
to ε0. The syntax of ACL2 is derived from the prefix-normal syntax of
Common Lisp: to denote the application of the function f on argument
x, one writes (f x) instead of the more traditional f(x). However,
in this paper we avoid Lisp and adhere to the latter notation. Our
presentation assumes basic familiarity with first-order logic and well-
founded induction and no previous exposure to the ACL2 system. The
relevant facets of the ACL2 logic are explained in passing. The reader
interested in a comprehensive understanding of ACL2 is referred to the
ACL2 Home Page (Kaufmann and Moore, 2006), which contains an
extensive hypertext documentation together with links and references
to numerous books and papers. The use of ACL2 does have some influ-
ence on the specific details of our formalizations. We model systems and
their properties using untyped, total, recursive, first-order functions; we
avoid explicit representation of infinite sets: to express “x is a natural
number”, we use the predicate natp(x) (which is axiomatized in ACL2)
instead of the more familiar x ∈ IN. However, the basic results are
independent of ACL2 and can be formalized in any theorem prover sup-
porting first-order quantification, Skolemization, and recursive function
definitions.

The remainder of the paper is organized as follows. We start in
Section 2 with a summary of related research on program correctness

proofs.tex; 5/01/2008; 22:12; p.3



4

and the use of the strategies formalized here in deductive verification
projects. In Section 3, we formalize the notions of partial and total
correctness of sequential programs based on operational semantics. In
Section 4, we present formalizations of the three proof strategies, and
derive a proof of soundness of each strategy. In Section 5, we derive
completeness theorems. In Section 6 we briefly comment on the mech-
anization of the results in ACL2. We discuss some implications of the
work in Section 7, and conclude in Section 8.

2. Related Work

In this section, we review related research on program verification.
Because of the vastness of the area, we confine ourselves to work that
involves the application of the strategies discussed in this paper.

McCarthy (1962) introduced the notion of operational semantics.
Operational models have been extensively used in mechanical theorem
proving, and are often lauded for clarity and concreteness (Greve et al.,
2000). Furthermore, in executable logics, operational semantics facili-
tates validation of formal models by simulation against concrete design
artifacts. Operational models have been particularly successful in the
Boyer-Moore class of theorem provers, namely ACL2 and its predeces-
sor, Nqthm (Boyer et al., 1995); in the next paragraph we summarize
some key program verification projects in these provers. Operational
models have also been used in program verification in HOL (Gordon
and Melham, 1993) and PVS (Owre et al., 1992). In HOL, Homeier
and Martin (1995) have developed a verification system called Sunrise
with a model of a small programming language; Norrish (1998) has
developed an operational formalization of C. In Isabelle, Strecker has
used an operational semantics to formalize Java and the JVM (Strecker,
2002). Recently Fox (2003) has formalized an operational model of the
ARM6 processor ISA in HOL. In PVS, Hamon and Rushby (2004) have
used operational models to formalize statechart languages.

The Nqthm and ACL2 theorem provers have extensively used opera-
tional semantics for modeling computing systems. One of the significant
verification projects with operational semantics in Nqthm involved the
“CLI stack” (Bevier et al., 1989), consisting of a netlist model of a
microprocessor, FM9001, written in an operationally defined Hardware
Description Language called DUAL-EVAL (Hunt and Brock, 1992),3 an
operational semantics of its ISA, an assembly language called Piton and

3 The original stack constituted a microprocessor model called FM8502, a 32-bit
version of the 16-bit microprocessor FM8501 (Hunt, 1994). FM9001 was developed
later using DUAL-EVAL, and the stack ported to this microprocessor.

proofs.tex; 5/01/2008; 22:12; p.4



5

models of an assembler, loader, and linker for Piton programs (Moore,
1996), a simple operating system (Bevier, 1987), two simple high-level
languages (Young, 1988; Flatau, 1992), and simple application pro-
grams written in these languages (Wilding, 1993). Each layer of the
stack was verified against the semantics of the underlying layer, and
the theorems were composed to mechanically prove the correctness of
high-level programs executed on the microprocessor model. Another
significant project in Nqthm was Yu’s (1992) verification of the binary
code produced by gcc on the Motorola 68020 for subroutines in the
Berkeley C string library. Some of the non-trivial operational machine
models formalized in ACL2 include (i) the Motorola CAP digital signal
processor at the pipelined architectural level and sequential microcode
ISA level (Brock and Hunt, 1999), (ii) a pipelined microprocessor with
interrupts and speculative execution (Sawada and Hunt, 1997), (iii) the
Rockwell Collins AAMP7TM microprocessors, and (iv) a significant
subset of the JVM and its bytecode verifier (Liu and Moore, 2005).

In Nqthm and ACL2, program verification has typically involved
clock functions. In this approach, one defines a function to specify for
each machine state the number of steps to termination. Clock functions
were involved in code proofs for the CLI stack, and Yu’s verification of
the C string library mentioned above. At Rockwell Collins Inc., verifica-
tion of AAMP7TM programs have used clocks. Recently, clock functions
have been used in proofs of JVM bytecodes (Moore, 2003b; Liu and
Moore, 2004). The method has been applied in other theorem provers
as well, albeit less frequently (Wilding, 1997).

The use of inductive assertions involves annotating program points
with formulas over program variables such that whenever control reaches
an annotated point the associated assertions must hold. This notion
was introduced in works of Goldstein and von Neumann (1961), and
Turing (1949). These early results involved annotating all control points
and the assertions thus corresponded essentially to defining a stepwise
invariant of the program steps. The idea was generalized in papers by
Floyd (1967) and Manna (1969), enabling assertions to be attached only
at cutpoints such as loop tests and program entry and exit. Hoare (1969)
introduced program logics, namely first-order logic augmented with a
set of Hoare axioms for specifying the program semantics. The Hoare
axioms provide an axiomatic semantics of the program, whereby an
instruction is used as a predicate transformer rather than a state trans-
former. For a detailed overview of axiomatic semantics and program
logic, see Apt’s survey on “Ten Years of Hoare’s Logic” (Apt, 1981);
in Section 4.3, we provide a brief overview of some relevant aspects of
axiomatic semantics.

proofs.tex; 5/01/2008; 22:12; p.5



6

Assertional reasoning methods have enjoyed much popularity in re-
search on program verification. In practice, the method requires two
trusted tools, namely (i) a verification condition generator (VCG) that
crawls over an annotated program to generate a collection of first-order
formulas (called verification conditions), and (ii) a theorem prover to
discharge these formulas. King (1969) wrote the first mechanized VCG.
VCGs have been extensively used in practical program verification
projects. Some of the non-trivial projects employing this technology
include the Extended Static Checker for Java (Detlefs et al., 1998),
the Java Certifying Compiler (Colby et al., 2000), and the Praxis
verification of Spark Ada programs (King et al., 2000; Barnes, 2003).
VCGs are also the key trusted components in proof-carrying code ar-
chitectures (Necula, 1997). In theorem proving, the use of assertions
with an operational semantics has typically involved implementing a
VCG for the target language and verifying it against the operational
model. Gloess (1999) formalizes and verifies a VCG in PVS. The Sunrise
system cited above includes a verified VCG for the target language
in HOL; Schirmer (2005) presents a similar framework in Isabelle.
Assertions have been used in Isabelle to verify pointer-manipulation
programs (Mehta and Nipkow, 2003) and BDD normalization algo-
rithms (Ortner and Schirmer, 2005). Finally, as mentioned in Sec-
tion 1, in our previous work (Moore, 2003a; Matthews and Vroon,
2004; Matthews et al., 2006), we built a formal framework in ACL2 to
emulate VCG reasoning using symbolic simulation via an operational
semantics, without implementing a VCG. We will briefly describe this
framework while formalizing assertions in Section 4.3.

Analysis of the expressive power of mathematical theories for pro-
gram verification has traditionally been confined to Hoare logics. The
original Hoare axioms provided proof rules formalizing a few elementary
programming constructs such as assignments, conditionals, and loops.
The proof rules were extended to incorporate virtually all programming
constructs including goto’s, coroutines, functions, data structures, and
parallelism (Clint and Hoare, 1971; Hoare, 1972; Clint, 1973; Oppen
and Cook, 1975; Owicki and Gries, 1976). Soundness of axiomatic
semantics has often been established by appealing to an operational
model of the underlying language. De Bakker (1980) provides a compre-
hensive treatment of the issues involved in developing axiomatic seman-
tics of different programming constructs. The soundness theorems for
these different flavors of Hoare logic were usually established by careful
mathematical arguments, but the arguments were rarely mechanized in
a theorem prover. One notable exception is Harrison’s (1998) formaliza-
tion of Dijkstra’s (1978) monograph “A Discipliine of Programming”
in HOL. In addition, the VCG verification work cited above has of-

proofs.tex; 5/01/2008; 22:12; p.6



7

ten involved mechanically checking that the formula transformations
implemented by the VCG are sound with respect to the operational
semantics.

In addition to soundness, there has been significant research analyz-
ing completeness of the different proof rules for axiomatic semantics.
Clarke (1976) provides a comprehensive treatment of completeness (and
incompleteness) results for Hoare-like axiomatic proof systems; in addi-
tion, Apt’s survey (1981) provides an interesting analysis of both sound-
ness and completeness results. Cook (1978) presents a sound and com-
plete assertional system for certain classes of programs. Wand (1978)
shows that the axiomatic formulation of certain constructs are incom-
plete. Sokolowski (1977) proves the completeness of a set of axioms for
total correctness.

3. Operational Semantics and Program Correctness

The use of operational semantics involves modeling the instructions in
a program by specifying their effects on the state of the underlying
machine. To formalize a programmming language operationally in a
mathematical logic, one first models the machine states as objects in
the logic. A machine state is represented as a tuple that specifies the
values of all the machine components such as the registers, memory,
stack, etc. The components include the program counter (pc) and the
program to be executed. These two components identify the “current
instruction” at any state s, which is the instruction in the program
that is pointed to by the pc. The meaning of a program is specified by
defining a next state function step: for any state s, step(s) returns the
state s′ obtained by executing the current instruction in s. For instance,
if the instruction is LOAD then s′ might be obtained from s by pushing
some component of s on the operand stack and advancing the pc by an
appropriate amount. The function step can thus be viewed as a formal
interpreter for the programming language in question.

Given step, one specifies machine executions by the function run
below, which returns the state after stepping for n instructions from s.
Recall that natp(x) holds if and only if x is a natural number.

run(s, n) ,

{
run(step(s), n− 1) if natp(n) ∧ (n > 0)
s otherwise

Correctness of programs is specified with three predicates pre, post,
and exit on the machine states, with the following associated meanings.

− Predicates pre and post represent the precondition and postcon-
dition. Thus if the program of interest is a sorting program then

proofs.tex; 5/01/2008; 22:12; p.7



8

pre(s) might posit that some component of s contains a list l of
numbers and post(s) might say that some (possibly the same) com-
ponent contains a list of numbers that is an ordered permutation
of l.

− The predicate exit recognizes the “terminal” states. The definition
of exit depends on the program being verified. While analyzing
halting programs we define exit to recognize the halted states of
the machine: exit(s) , (step(s) = s). More commonly, we analyze
a program component and exit is defined to recognize the return
of control from that component. For instance, if the component is
a subroutine then exit might recognize the popping of the current
call frame from the call stack.

Formally there are two notions of correctness, partial and total. Partial
correctness entails showing that if, starting from a state s satisfying
pre, the machine reaches an exit state, then post holds for the first such
exit state. No obligation is involved if no exit state is reachable from
s; that is, a non-terminating program is considered partially correct.
Partial correctness can be expressed by the following formula.

Partial Correctness:
∀s, n : pre(s) ∧ natp(n) ∧ exit(run(s, n))

∧ (∀m : natp(m) ∧ (m < n)⇒ ¬exit(run(s,m)))
⇒ post(run(s, n))

Total correctness entails showing both partial correctness and termi-
nation, that is, some exit state is reachable from each state satisfying
pre. Termination can be expressed by the following formula.

Termination:
∀s : pre(s)⇒ (∃n : natp(n) ∧ exit(run(s, n)))

Given an operational semantics specified by step, together with pred-
icates pre, post, and exit, verifying a program amounts to proving
Partial Correctness and Termination. We now make a brief remark
on the formalization of these obligations in ACL2. Note that both the
obligations involve arbitrary first-order quantification. The syntax of
the ACL2 logic is quantifier-free, and all formulas are assumed to be
implicitly universally quantified over all free variables. However, ACL2
provides a logical construct (called the defchoose principle) to enable
expression of quantified formulas via Skolemization. Suppose that P is a
binary predicate definable in some ACL2 theory T . The defchoose prin-
ciple allows us to extend T by introducing a function exists-P-witness
with the following axiom:

∀x, y : P (x, y)⇒ P (x, exists-P-witness(x))

proofs.tex; 5/01/2008; 22:12; p.8



9

The function exists-P-witness is thus simply a Skolem function, and
the principle is essentially a rendering of Hilbert choice in the ACL2
logic. ACL2 provides a macro called defun-sk to conveniently define
quantified formulas via Skolemization. For instance defun-sk allows
us to introduce the predicate exists-P(x) that holds if and only if there
exists a y such that P (x, y) by first introducing exists-P-witness above
and then defining exists-P in terms of the witness as follows.

exists-P(x) , P (x, exists-P-witness(x))

The macro also supports universally quantified predicates by exploiting
the duality between universal and existential quantification.

Quantification and Skolemization are crucial to the results of this
paper. In particular, we make critical use of the fact that whenever a
quantified predicate is defined, the logic introduces the corresponding
Skolem witness which can be used in subsequent definitions.

4. Proof Strategies

We now discuss three strategies commonly used for proving the cor-
rectness of operationally modeled sequential programs. The strategies
are (i) stepwise invariants, (ii) clock functions, and (iii) inductive as-
sertions. We also provide a brief sketch of the proof of soundness for
each strategy; completeness proofs are presented in the next section.

The soundness of a proof strategy entails showing that if the corre-
sponding proof obligations are met then one can derive the correctness
statements. Since each strategy has been extensively used for mecha-
nized program verification such results are not surprising; we discuss
the proofs mainly to provide a flavor of the reasoning involved in doing
them formally. We have carried out the soundness proofs in ACL2
both to validate our formalization of the correctness statements and
to facilitate implementation of macros for switching strategies. (See
Section 6.)

Each strategy can be used to prove the correctness theorems; how-
ever, the proof obligations involved are different. To illustrate the meth-
ods, we use the simple program fragment shown in Figure 1. The
program assigns two variables X and Y the values 0 and 10 respectively,
and then executes a loop in which X is incremented and Y is decremented
by 1 at each iteration; the loop terminates when Y is 0. We assume
(i) the underlying machine state contains components X, Y, and pc, and
for any state s the values of these components are given by X(s), Y (s),
and pc(s) respectively, (ii) the language constructs, namely assignment,
branching, and arithmetic, are encoded in the definition of the function

proofs.tex; 5/01/2008; 22:12; p.9



10

1: X:=0
2: Y:=10
3: IF (Y == 0) goto 7;
4: X:=X+1;
5: Y:=Y-1;
6: goto 3;
7: ...

Figure 1. A Simple One-Loop Program Fragment. The number to the left of each
instruction represents the corresponding pc value.

step, and (iii) the transitions given by step correspond to executing one
instruction. The precondition and postconditions and the exit predicate
are defined below. Here loaded(s) holds if s has the program fragment
loaded in memory from location 1.

− pre(s) , (pc(s) = 1 ∧ loaded(s))

− exit(s) , (pc(s) = 7)

− post(s) , (X(s) = 10)

4.1. Stepwise Invariants

The method of stepwise invariants represents one approach to proving
program correctness. To prove partial correctness in this method, one
defines a predicate inv so that the following three formulas are theorems:

I1: ∀s : pre(s)⇒ inv(s)

I2: ∀s : inv(s) ∧ ¬exit(s)⇒ inv(step(s))

I3: ∀s : inv(s) ∧ exit(s)⇒ post(s)

Partial correctness follows from I1-I3. To prove this, we must show
that for each state s from which some exit state is reachable, the first
reachable exit state from s satisfies post. The key lemmas for the proof
are shown in Figure 2. The lemmas are interpreted as follows. Let s be
an arbitrary non-exit state satisfying inv, and n be a natural number
such that (i) there is no exit state reachable from s in n or fewer steps,
and (ii) the state s′ reachable from s in (n + 1) steps satisfies exit.
Consider the sequence 〈s, step(s), . . . , s′〉. Each non-exit state in the
sequence satisfies inv (Lemma inv-for-internal), and in addition, the

proofs.tex; 5/01/2008; 22:12; p.10



11

non-exit(s, n)

,

{
¬exit(s) if ¬natp(n) ∨ (n = 0)
¬exit(run(s, n)) ∧ non-exit(s, n− 1) otherwise

Lemma inv-for-internal
∀s, n : inv(s) ∧ non-exit(s, n)⇒ inv(run(s, n))

Lemma inv-for-first-exit
∀s, n : inv(s) ∧ natp(n) ∧ non-exit(s, n)

∧ exit(run(s, n+ 1))
⇒ inv(run(s, n+ 1))

Figure 2. Key Lemmas in the Proof of Soundness of Stepwise invariants. Following
ACL2, we use T and NIL for logical true and false, and also specify formalized
lemmas by names rather than numbers. Lemma inv-for-internal can be proven
using I2 by induction on n. Lemma inv-for-first-exit follows from Lemma
inv-for-internal, I2 and the fact that if non-exit(s, n) holds then ¬exit(run(s, n)).

first exit state s′ satisfies inv as well (Lemma inv-for-first-exit).
Then by I1 and I3, for each non-exit state s satisfying pre, s′ satisfies
post. Finally, if s is an exit state that satisfies pre, then by I1 and I3 s
(which is the first reachable exit state from s) also must satisfy post. 2

Total correctness additionally requires a well-foundedness restric-
tion. From set theory, a well-founded structure is a pair 〈O,≺〉 where
O is a set and ≺ is a binary relation such that there is no infinite
decreasing chain in O with respect to ≺ (Church and Kleene, 1937).
To prove total correctness, one defines a function measure (called a
ranking function) such that the following two formulas are theorems.
Here o-p(x) holds if and only if x is a member of O where 〈O,≺〉 is a
well-founded structure.

I4: ∀s : inv(s)⇒ o-p(measure(s))

I5: ∀s : inv(s) ∧ ¬exit(s)⇒ measure(step(s)) ≺ measure(s)

Total correctness follows from I1-I5. To prove termination, assume by
way of contradition that no exit state is reachable from a state s satisfy-
ing pre. By I1 and I2, each state in the sequence 〈s, step(s), . . .〉 satisfies
inv. Thus, by I4 and I5, the sequence forms an infinite decreasing chain
on O with respect to the relation ≺, violating well-foundedness. 2

We take O to be the set of ordinals below ε0, which is axioma-
tized in ACL2. Ordinals in ACL2 are represented in Cantor Normal
Form (Manolios and Vroon, 2003), and there are two predicates, (i) o-p

proofs.tex; 5/01/2008; 22:12; p.11



12

inv(s) ,



loaded(s) if pc(s) = 1
X(s) = 0 ∧ loaded(s) if pc(s) = 2
X(s) + Y (s) = 10 ∧ natp(Y (s)) ∧ loaded(s) if pc(s) = 3
X(s) + Y (s) = 10 ∧ posp(Y (s)) ∧ loaded(s) if pc(s) = 4
X(s) + Y (s) = 11 ∧ posp(Y (s)) ∧ loaded(s) if pc(s) = 5
X(s) + Y (s) = 10 ∧ natp(Y (s)) ∧ loaded(s) if pc(s) = 6
X(s) = 10 if pc(s) = 7
NIL otherwise

Figure 3. A Single-step Invariant for the One-Loop Program. Here NIL denotes
logical false, and the predicate posp is defined as: posp(x) , natp(x) ∧ (x > 0)

to recognize (the representation of) ordinals, and (ii) the relation ≺
(called o<) axiomatized to be an irreflexive total order on ordinals.

A key attraction of stepwise invariants is that none of the proof obli-
gations requires reasoning about more than a single step. Nevertheless,
coming up with an appropriate definition of inv is widely acknowledged
to be complicated and tedious (Shankar, 1997; Manna and Pnueli,
1995). To illustrate the difficulty, consider proving partial correctness
of the program in Figure 1. To satisfy I2, inv must characterize every
possible pc value: to infer that when the control is at pc value 7 the
value of X is 10, we must know that at pc value 3 the sum X+Y must
be 10 and X and Y are both at least 0. Figure 3 shows one possible
definition of inv.

The complexity of the stepwise invariants approach increases sub-
stantially for a practical machine model such as a model of the JVM.
For instance, method invocation in the JVM must deal with method
resolution with respect to the object on which the method is invoked, as
well as effects on many components of the machine state including the
call frames of the caller and the callee, the thread table, the heap, and
the class table; defining inv to hold along a transition involving such
operations is non-trivial. Finally, for total correctness proofs, defining
the function measure involves analogous complications.

4.2. Clock Functions

Clock functions provide another method for proving program correct-
ness. In this method, one defines a function mapping each state s to
a natural number which specifies the number of transitions to reach

proofs.tex; 5/01/2008; 22:12; p.12



13

the first exit state from s. For proving total correctness, we define the
function clock so that the following formulas are theorems:

C1: ∀s : pre(s)⇒ natp(clock(s))

C2: ∀s, n : pre(s) ∧ natp(n) ∧ exit(run(s, n))⇒ clock(s) ≤ n

C3: ∀s : pre(s)⇒ exit(run(s, clock(s)))

C4: ∀s : pre(s)⇒ post(run(s, clock(s)))

C1-C4 guarantee total correctness. By C1 and C3, for each state s
satisfying pre, there exists some natural number m, namely clock(s),
such that run(s,m) satisfies exit. Finally, C1, C2 and C3 guarantee
that the state run(s, clock(s)) is the first exit state reachable from s,
and, by C4, this state satisfies post. 2

To express only partial correctness, we weaken C1, C3 and C4
to their “primed” versions below, requiring that the obligations be
satisfied for a state s only if some exit state is reachable from s.

C1′: ∀s, n : pre(s) ∧ exit(run(s, n))⇒ natp(clock(s))

C3′: ∀s, n : pre(s) ∧ exit(run(s, n))⇒ exit(run(s, clock(s)))

C4′: ∀s, n : pre(s) ∧ exit(run(s, n))⇒ post(run(s, clock(s)))

Partial correctness follows from C1′, C2, C3′, and C4′. This is trivial
since even with the weakening, if, for a state s satisfying pre, there
exists a natural number n such that run(s, n) satisfies exit, then there
still exists a natural number m, namely clock(s), such that after m
steps the first exit state is reached and this state satisfies post. 2

What is complicated about clock functions? Consider total correct-
ness. By C1-C3, we know that for each state s satisfying pre, clock(s)
is the minimum number of transitions to reach the first exit state. But
this number is the precise characterization of the program’s time com-
plexity! On the other hand, total correctness with stepwise invariants
did not seem to require characterizing the time complexity although it
involved an argument showing that the program eventually terminates.

Consider the use of clock functions to prove total correctness of our
running example. We show one possible definition of clock in Figure 4.
The function is defined by analyzing the control structure of the pro-
gram as follows. The function lpc(s), which determines the number of
instructions executed from a state s poised at the start of loop (pc value
3) until the loop terminates, is either 0 (if the loop is not taken), or
the sum of the number of instructions (namely, 4) in one loop iteration

proofs.tex; 5/01/2008; 22:12; p.13



14

lp-taken(s) , (pc(s) = 3) ∧ natp(Y (s)) ∧ (Y (s) > 0) ∧ loaded(s)

lpc(s) ,

{
0 if ¬lp-taken(s)
4 + lpc(run(s, 4)) otherwise

clock(s) , 2 + lpc(run(s, 2)) + 1

Figure 4. Clock Function for Verifying the One-Loop Program.

together with, recursively, the number of instructions to be executed
after one iteration from s until loop termination; finally, clock(s) com-
putes the number of instructions executed from program invocation to
exit by summing (i) the number of instructions from invocation to loop
entry, (ii) the number of instructions during loop iteration, and (iii) the
number of instructions from loop termination to exit. Thus to define
clock we only focus on the critical machine states (called cutpoints)
such as those for loop entry, and program invocation and exit rather
than each step as needed for stepwise invariants.

The complexity of clock functions in practice involves the use of
these definitions to formally prove C1-C4. Note that the definition
of lpc above is recursive; thus, we must ensure that the definition
is consistent. One way of ensuring consistency is to show that the
recursion is well-founded; this amounts to the proof that under the
conditions governing recursive calls (namely, when lp-taken(s) holds),
the value of the Y component of s (a positive natural number if the
recursive call is invoked) decreases along each recursive call. This is
essentially the argument for the termination of the loop (and hence the
program) itself. Furthermore, for verifying correctness of programs with
loops, one normally needs to prove lemmas characterizing the updates
performed during the execution of the loops; such lemmas need to be
proven by induction on the number of loop iterations.

4.3. Inductive Assertions

The third proof strategy we consider is inductive assertions. Stepwise
invariants require attaching assertions to each program point; clocks
require defining a function that counts the number of instructions to
the first exit state. Inductive assertions attempt to facilitate verification
by eliminating the need for both these exercises. Instead, the users
annotate a program with assertions at program cutpoints. The goal
is to prove that whenever control reaches a cutpoint the associated
assertions must hold. To guarantee this, one typically uses a program

proofs.tex; 5/01/2008; 22:12; p.14



15

cut(s) , ((pc(s) = 1) ∨ (pc(s) = 3) ∨ (pc(s) = 7))

a(s) ,


T if pc(s) = 1
X(s) + Y (s) = 10 ∧ natp(Y (s)) if pc(s) = 3
X(s) = 10 if pc(s) = 7
NIL otherwise

assert(s) , a(s) ∧ (((pc(s) = 1) ∨ (pc(s) = 3))⇒ loaded(s))

Figure 5. Definitions of cut and assert for the One-Loop Program.

called a verification condition generator (VCG) (King, 1969) in addition
to a theorem prover. A VCG “crawls” over the annotated program to
generate a collection of formulas (called verification conditions) which
are checked for validity by the theorem prover. Roughly, the guarantee
provided upon successful validity check can be stated as follows. “Let
p be any non-exit cutpoint satisfying assert. Let q be the next cutpoint
encountered in an execution from p. Then assert(q) must hold.” Thus, if
in addition (i) each initial state s (that is, those for which pre(s) holds)
is a cutpoint satisfying assert, (ii) each exit state is a cutpoint, and
(iii) for each exit state s assert(s) logically implies post(s), then the first
exit state reachable from any initial state must satisfy post. Finally, for
termination one also needs to associate a well-founded ranking function
rank with each cutpoint p and show that if q is the next subsequent
cutpoint from p then rank(q) ≺ rank(p).

Figure 5 shows the definitions of predicates cut (which characterize
the set of cutpoints) and assert for proving partial correctness of our
running example. Ignoring the “boiler-plate” predicate loaded(s), the
only non-trivial assertion is the loop invariant specified for pc value 3.

We briefly digress here to say a few words about axiomatic seman-
tics in order to relate the above with traditional VCG work. When
using assertional methods with a VCG one does not use assertions
over machine states but over the program variables: instead of writing
X(s)+Y (s) = 10 as above, we will write X+Y = 10. A VCG encodes the
semantics of the programming language as predicate transformations
over program variables. The transformations are written in the form
{P}σ{Q} (where P and Q are predicates over the program variables
and σ is a statement in the language) and are read as: “If P holds
before the execution of statement σ then Q holds afterwards.” Such

proofs.tex; 5/01/2008; 22:12; p.15



16

triples (also called Hoare triples) form the axiomatic semantics of the
language. The following is the axiom of assignment.

− {P}x := a{Q} holds if P is obtained by replacing all occurrences
of x in Q by a.

A VCG explores the control structure of an annotated program us-
ing the axiomatic semantics. Each control path leading from one cut-
point to the next produces one verification condition: the path along
program counter values 1 −→ 2 −→ 3 will produce the verification
condition T ⇒ (0 + 10) = 10. These conditions are then discharged
by a theorem prover. Note that each loop must contain at least one
cutpoint (typically inserted at the loop test) so that the exploration
terminates (Floyd, 1967; Manna, 1969).

To formalize inductive assertions, we need the notion of “next cut-
point”. For that purpose, we use the following definition:

csteps(s, i) ,

{
i if cut(s)
csteps(step(s), i+ 1) otherwise

Note that the above definition is partial; if no cutpoint is reachable
from s, then the recursion does not terminate and the equation does not
specify the value of csteps(s, i). ACL2 normally requires that recursive
definitions be terminating. However, the crucial observation here is that
the definition is tail-recursive. Manolios and Moore (2003) show how
such definitions can be consistently introduced in ACL2. In general,
tail-recursive definitions can be introduced in a logic that supports
recursive definitions and a Skolem choice function; the choice function
is used to exhibit a total function that witnesses the definition when the
recursion does not terminate. Given the definition above we can prove
that if some cutpoint is reachable from s in j steps then csteps(s, i)
returns (i + j). We postpone the proof of this statement to the next
section, where (in Figure 6) we present an analogous theorem about a
similarly defined tail-recursive function.

Using csteps, we now formalize the notion of the next reachable
cutpoint as follows. Fix a state d such that cut(d)⇔ (∀s : cut(s)); the
state d can be defined using defchoose. Then nextc(s) returns the first
reachable cutpoint from s if any, else d:

nextc(s) ,

{
run(s, csteps(s, 0)) if cut(run(s, csteps(s, 0)))
d otherwise

We now formalize verification conditions. Conditions V1-V5 specify
the obligations for partial correctness. Notice that the formulas involve
obligations only about assertions at cutpoints.

proofs.tex; 5/01/2008; 22:12; p.16



17

V1: ∀s : pre(s)⇒ assert(s)

V2: ∀s : assert(s)⇒ cut(s)

V3: ∀s : exit(s)⇒ cut(s)

V4: ∀s : assert(s) ∧ exit(s)⇒ post(s)

V5: ∀s, n : assert(s)∧¬exit(s)∧ exit(run(s, n))⇒ assert(nextc(step(s)))

Partial correctness follows from V1-V5. The proof is analogous to that
for stepwise invariants, but here we focus only on cutpoints. First ob-
serve that if s is not an exit state and some exit state is reachable from
s then, by V3 and the definition of nextc, some exit state is reachable
from nextc(step(s)). Now, by V1, the initial states (those satisfying
pre) satisfy assert. By V5 and the observation above, it follows that if
a state s satisfies assert, it follows that every reachable cutpoint from s
up to (and, by V3, including) the first reachable exit state s′ satisfies
assert. Then from V4, we infer that s′ satisfies post. 2

For total correctness, we additionally attach a well-founded ranking
function at cutpoints. This is formalized by the additional proof obliga-
tions V6 and V7 below, together with the necessary strengthening of
V5 to V5′. The strengthening ensures (from V2) that for each cutpoint
p there does exist a subsequent next cutpoint satisfying assert.

V5′: ∀s : assert(s) ∧ ¬exit(s)⇒ assert(nextc(step(s)))

V6: ∀s : assert(s)⇒ o-p(rank(s))

V7: ∀s : assert(s) ∧ ¬exit(s)⇒ rank(nextc(step(s))) ≺ rank(s)

Total Correctness follows from V1-V4, V5′, V6-V7. It suffices to show
that some exit state is reachable from each cutpoint p. By V2 and V5′,
for each cutpoint p, the state nextc(step(p)) is a subsequent cutpoint
reachable from p. But by well-foundedness, V6, and V7, one of these
cutpoints must be an exit state, proving the claim. 2

Note that it is possible to have minor variations of the above verifi-
cation conditions as follows. (1) We can remove the restriction that
the cutpoints include initial states by refining V1 to be pre(s) ⇒
assert(nextc(s). (2) We can remove V2 and use the conjunct cut(s) ∧
assert(s) instead of assert(s) in the antecedents of V4, V5, V5′ V6,
and V7. (3) We can remove V3 and use the disjunct cut(s) ∨ exit(s)
instead of cut(s) in V2. We ignore such variations in the rest of this
presentation.

Conditions V5 (resp., V5′) and V7 might involve multiple tran-
sitions. For instance, V5 says that if a non-exit cutpoint satisfies the

proofs.tex; 5/01/2008; 22:12; p.17



18

assertions then so does the next subsequent cutpoint. Traditionally, a
VCG simplifies these conditions to a first-order proof obligation as sug-
gested by our trivial example. However, in our previous work (Matthews
et al., 2006), we have built a framework in which a theorem prover
(ACL2) itself can be configured to discharge them by symbolic simula-
tion. The basic idea is to prove the following two theorems, which are
both trivial:

SSR1: ∀s : ¬cut(s)⇒ nextc(s) = nextc(next(s))

SSR2: ∀s : cut(s)⇒ nextc(s) = s

We treat SSR1 and SSR2 as conditional rewrite rules. For a symbolic
state s, they rewrite the term nextc(s) to either s or nextc(step(s));
in the latter case we expand the definition of step, perform possible
simplifications, and apply the rules again on the resulting term. An
attempt to prove V5 thus causes ACL2 to symbolically simulate the
program from each cutpoint satisfying assert until another cutpoint
is reached, followed by checking if the new state also satisies assert.
The process mimics a forward VCG, but generates (and discharges)
verification conditions on a case-by-case basis.

The formalization of inductive assertions has strong parallels with
stepwise invariants. One can view the assertions as stepwise invariants
over a big step semantics, where a big step transits from one cutpoint
to the next. Note that there is one minor difference between the two ap-
proaches in the “persistence condition” for partial correctness (namely,
I2 vs. V5). I2 requires that for each non-exit state s satisfying inv,
step(s) must satisfy inv; for a cutpoint s satisfying assert, V5 requires
the next subsequent cutpoint to also satisfy assert only if some exit
state is reachable from s. The difference reflects the disparate design
choices involved in formalizing each method. For stepwise invariants,
the goal is to develop obligations that do not involve more than a single
machine step. However, for inductive assertions, the above weakening is
logically necessary to support composition. Let P be a procedure calling
a subroutine Q, and assume that Q has been proven partially correct.
Then, on encountering an invocation of Q during the verification of P
we want symbolic simulation to skip past Q, inferring its postcondition
at its exitpoint. However, since the correctness proof of Q is partial we
can only justify the inference under the hypothesis that Q eventually
reaches an exitpoint. We can then use the antecedent “some exitpoint
of P is reachable” (by noting that when a caller exits, all its callees
also exit) from the weakened obligation for P to relieve this hypothesis
and continue symbolic simulation past the exitpoint of Q.

There is an important difference between our formalization and a
traditional VCG approach. Recall that the assertions in axiomatic se-

proofs.tex; 5/01/2008; 22:12; p.18



19

mantics involve program variables. However, since our approach is based
on an operational semantics, we permit any predicate on the machine
state that is expressible in the logic. Furthermore, we can freely use
arbitrary quantified first-order formulas; the only practical requirement
is that there are enough theorems about the function and predicate
symbols involved to ascertain the validity of the assertions at any
(symbolic) state encountered during symbolic simulation. For instance,
in our framework, we have used predicates such as the following:

excut(s) , (∃n : cut(run(s, n)))

Although the predicate is not computable, ACL2 can “propagate” it
through any symbolic state with this assertion attached, by using the
following theorems as rewrite rules.

∀s : cut(s) ⇒ excut(s) = T
∀s : ¬cut(s) ⇒ excut(s) = excut(step(s))

5. Completeness of Proof Strategies

We now turn our attention to proving that each of the three proof
strategies above is complete. By completeness, we mean that given any
proof of correctness of a program we can mechanically construct a cor-
responding proof in any of the strategies. The completeness results do
not depend on the structure or style of the alleged original proof; given
that the obligation Partial Correctness is a theorem (together with
Termination for total correctness proofs) for some operational model
defined by step and corresponding predicates pre, post, and exit, we
define appropriate functions and predicates that meet the obligations
necessary for each strategy.

We start with clock functions. The function clock below satisfies the
relevant obligations of a clock function proof.

esteps(s, i) ,

{
i if exit(s)
esteps(step(s), i+ 1) otherwise

clock(s) , esteps(s, 0)

Assuming that Partial Correctness is provable, we now show that
the conditions C1′, C2, C3′, and C4′ are provable for this definition.
The key lemma esteps-characterization is shown in Figure 6. The
lemma can be interpreted as follows. Let s be an arbitrary state and i
be a natural number, and assume that there is some exit state reachable

proofs.tex; 5/01/2008; 22:12; p.19



20

Lemma esteps-characterization
∀s, n, i : exit(run(s, n)) ∧ natp(i)⇒

let rslt← esteps(s, i) in
let stps← (rslt− i) in

natp(rslt) ∧
natp(stps) ∧
exit(run(s, stps)) ∧
(natp(n)⇒ (stps ≤ n))

Figure 6. Key lemma about esteps. Lemma esteps-characterization is proven by
induction on n. For the base case, note that if ¬natp(n) ∨ (n = 0) holds then the
lemma is trivial. For the induction hypothesis we assume the instance of the formula
under the substitution [s ← step(s), n ← (n − 1), i ← (i + 1)]. The induction step
follows from the definition of esteps.

from s in n steps. Let (i) rslt be the value returned by esteps(s, i), and
(ii) stps be the difference (rslt − i). Then rslt and stps are natural
numbers, executing the machine for stps times from s results in an
exit state, and stps is less or equal to n. Thus, if there is some n such
that run(s, n) is an exit state then clock(s) returns a natural number
that counts the number of steps to the first reachable exit state from s,
satisfying C1′, C2, and C3′. Finally, from Partial Correctness, if s
satisfies pre, then run(s, clock(s)) must satisfy post, proving C4′. 2

The reader familiar with ACL2 will note that since esteps has been
defined with tail-recursion (and might not always terminate), there can
be no induction scheme associated with the recursive structure of this
definition. The proof of Lemma esteps-characterization requires
an explicit induction scheme with the extra parameter n, namely the
number of steps to reach some exit state from s if such a state exists.

Finally, we now prove the stronger total correctness obligations C1,
C3, and C4 as follows assuming that both Partial Correctness and
Termination are provable. Let n(s) be the Skolem witness for the
existential predicate in the Termination formula. By Termination
and the properties of Skolemization, we know that for a state s satis-
fying pre, run(s, n(s)) satisfies exit. The obligations C1, C3, and C4
now follow by instantiating the variable n in C1′, C3′, and C4′ with
n(s). 2

We now consider stepwise invariants. From the results above, we can
assume without loss of generality that the correctness proof has been
translated to a proof involving clock functions using the definitions of

proofs.tex; 5/01/2008; 22:12; p.20



21

esteps and clock. We define the relevant invariant inv below.

inv(s) , (∃p,m : pre(p) ∧
natp(m) ∧
(s = run(p,m)) ∧
((∃α : exit(run(p, α)))⇒ (m ≤ clock(p))))

The definition can be read as follows. A state s satisfies inv if s is
reachable from some pre state p and the path from p to s contains no
exit state, except perhaps for s itself.

We now derive I1-I3 from the definition of inv. For I1 note that given
a state s satisfying pre we can prove inv(s) by choosing the existentially
quantified variables p and m to be s and 0 respectively. For I3, let s be
an exit state satisfying inv and let p(s) andm(s) be the Skolem witnesses
for p and m respectively. Then by Lemma esteps-characterization
and definitions of inv and clock, p(s) satisfies pre and s is the first
exit state reachable from p(s); I3 follows from Partial Correctness.
Finally, to prove I2, we assume that inv holds for some non-exit state
s, and show that inv holds for step(s). For this, we must determine
a state q satisfying pre and a natural number n such that step(s) =
run(q, n); furthermore, if there is an exit state reachable from step(s)
then n ≤ clock(q). Let p(s) and m(s) be the Skolem witnesses for
inv(s) as above. Then we choose q to be p(s) and n to be (m(s) + 1).
Note that by the definition of inv, we have s = run(p(s),m(s)); thus by
definition of run, step(s) = run(p(s),m(s)+1). Finally, if some exit state
is reachable from step(s) then it is also reachable from s. Since s is not
an exit state, by Lemma esteps-characterization and definition of
clock, we know (i) natp(clock(p(s))) and (ii) m(s) < clock(p(s)). Thus
(m(s) + 1) ≤ clock(p(s)), proving I2. 2

For total correctness, we define the following measure:

measure(s) , clock(s)

We can now prove I4 and I5. Let s be an arbitrary state satisfying inv.
Then as above, s must be reachable from some state p(s) satisfying
pre, and there is no exit state in the path from p(s) to s. By Termi-
nation, some exit state is reachable from p(s); thus, some exit state
is reachable from s. Now, by Lemma esteps-characterization and
definition of clock, clock(s) is a natural number (and hence an ordinal),
proving I4. Furthermore, for any state s, clock(s) gives the number of
transitions to the first reachable exit state. Thus if s is not an exit state

proofs.tex; 5/01/2008; 22:12; p.21



22

and an exit state is reachable from s (by inv and Termination), then
clock(step(s)) < clock(s), proving I5. 2

We now consider inductive assertions. Obviously, this strategy would
reduce to stepwise invariants if each state were a cutpoint. However,
our goal is to attach assertions (and ranking functions) to a collection
of cutpoints given a priori. We use the following definitions for assert
and rank. Here inv is the same predicate that we used in proving com-
pleteness of stepwise invariants above. Note that the definition of assert
contains a case split to account for V2.

assert(s) ,

{
inv(s) if cut(s)
NIL otherwise

rank(s) , clock(s)

The proof of completeness of assertional reasoning is analogous to that
for stepwise invariants. The only non-trivial lemma necessary for partial
correctness requires establishing the followng. “Suppose that a non-exit
cutpoint s satisfies assert and let s′ be nextc(step(s)). Then if some exit
state is reachable from s′ there exists a state p and a natural number
m such that s′ = run(p,m) and m ≤ clock(p).” We exhibit such p
and m as follows. Assume p(s) and m(s) to be the Skolem witnesses
for inv(s) as in the proof of completeness of stepwise invariants; note
from above that assert is defined in terms of inv. We then take p to
be p(s) and m to be (m(s) + 1 + csteps(step(s), 0)). The proof thus
reduces to showing (m(s) + 1 + csteps(step(s), 0)) ≤ clock(p(s)) for
each non-exit cutpoint s. We prove this by first showing that there
is no intermediate cutpoint between s and s′; this follows from the
definition of csteps and is derived by induction analogous to Lemma
esteps-characterization in Figure 6 but using csteps instead of
esteps. Thus since some exit state is reachable from s it must also be
reachable from s′. The lemma now follows from the definitions of esteps
and clock. Finally, for total correctness, we note that since there is no
intermediate cutpoint between s and s′ the number of steps to the first
exit state (which is what the function clock counts) must be less for s′

than for s. 2

Our results above establish that if one can prove the correctness
of an operationally formalized program in any manner, then one can
mechanically derive the proof obligations of each strategy. However, the
results should be regarded with a caveat. They do not imply that in
practice one technique might not be easier than the other. For instance,
manually writing a stepwise invariant for each pc value is more tedious
than attaching assertions only at cutpoints. Also, the functions and
predicates that we used to prove the completeness theorems might not

proofs.tex; 5/01/2008; 22:12; p.22



23

be directly used to verify a program from scratch. For instance, the
clock function we used essentially runs the program until some exit state
is reached; as we saw in Section 4.2, using a clock function in practice
requires a careful reflection of the control structure so that properties
about loops can be proven by induction. However, our results perhaps
do indicate that the difficulty in practical code proofs stems from the
inherent complexity in reasoning about complex computing systems
rather than the nuances of a particular proof style.

6. Remarks on Mechanization

The proofs of soundness and completeness discussed above are inde-
pendent of the details of the operational model (that is, the formal
definition of step), the precondition, and the postcondition. In ACL2,
we carry out the reasoning in the abstract, essentially formalizing the
proof sketches outlined in the last two sections. The relevant abstraction
is achieved using encapsulation.

ACL2 allows axiomatization of new function symbols via so-called
extension principles. The most common extension principle is the def-
initional principle which permits introduction of functions with total
(recursive) definitions; the return value of such a function is specified for
all possible values of its arguments. In contrast, the encapsulation prin-
ciple introduces functions axiomatized only to satisfy some constraints;
for example, we can introduce a unary function foo axiomatized only
to return a natural number. For consistency, the user must exhibit
some function (called the witness) satisfying the constraints; for foo,
one witness is the constant function that always returns 1.

Since the only axioms about an encapsulated function are the con-
straints, any theorem provable about such a function is also provable
for other functions satisfying the constraints. More precisely, call the
conjunction of the constraints on f the formula φ. For any formula ψ
let ψ̂ be the formula obtained by replacing the function symbol f by
the function symbol f ′. A derived rule of inference called functional
instantiation specifies that for any theorem θ one can derive the the-
orem θ̂ provided one can prove φ̂ as a theorem (Boyer et al., 1991).
In the example of foo above, if we can prove ∀x : bar(foo(x)) for some
predicate bar and if h is any function that provably returns a natural
number, then functional instantiation can be used to derive bar(h(x)).

We use encapsulation to reason about proof strategies as follows.
Consider the soundness theorem for the partial correctness of stepwise
invariants. We encapsulate functions step, pre, post, exit, and inv to
satisfy I1-I3, and derive the formula Partial Correctness. For the

proofs.tex; 5/01/2008; 22:12; p.23



24

completeness proof we do the opposite, namely encapsulate pre, step,
and post constrained to satisfy partial correctness and derive I1-I3.

We note that the mechanical proofs are not trivial, principally be-
cause ACL2 provides limited automation in reasoning about quantified
formulas. The proofs therefore require significant manual guidance and
care needs to be taken in formalizing concepts such as “the first reach-
able exit state from s”. However, the basic structure of the proofs follow
the high-level descriptions provided in the preceding two sections.

The generic nature of the proofs enables us to mechanically switch
strategies by functional instantiation. For instance, let step-c, pre-c,
post-c, exit-c, and inv-c be the functions involved in a stepwise invari-
ant (partial correctness) proof of some program. We can derive the
corresponding clock function proof by the following two steps.

1. Derive Partial Correctness by functionally instantiating the sound-
ness theorem for stepwise invariant; the instantiation substitutes
the concrete functions step-c for step, etc. ACL2 must prove that the
concrete functions satisfy the constraints. But the constraints are
I1-I3 which are what have been proven for the concrete functions.

2. Derive the clock obligations by generating the clock described in
Section 5, and functionally instantiating the completeness theorem.
The constraint is exactly the statement of partial correctness for
the concrete functions which has been proven in Step 1.

We have developed a macro in ACL2 to automate the above steps for
switching between any two of the strategies. Given a correctness proof
for a program in a particular style and a keyword specifying the target
strategy, the macro performs the above steps, generating the requisite
functions and functionally instantiating the generic theorems.

7. Discussion

The soundness and completeness theorems are not conceptually deep,
once the strategies are formalized. The only non-trivial insight in the
derivations is the understanding that quantification and Skolemization
can be used in the logic to define functions characterizing the set of
reachable states and the number of steps to termination. In spite of
the simplicity, however, several researchers have been surprised when
shown the completeness theorems (before seeing the proofs) precisely
because of the apparent dissimilarities in the workings of the different
proof strategies. For instance, clock functions were considered to be
significantly different from stepwise invariants and assertional reason-
ing. Indeed, clock functions had often been criticized before on the

proofs.tex; 5/01/2008; 22:12; p.24



25

grounds that they require reasoning about efficiency of the program
when “merely” a correctness theorem has been desired.4

Our work also provides the important foundational basis for build-
ing deductive strategies for program verification. In spite of significant
research on program correctness, it is still surprisingly easy to create
apparently reasonable but flawed proof strategies. To illustrate this,
we consider a strategy used by Manolios and Moore (2003) for reason-
ing sequential programs via symbolic rewriting. The strategy involves
defining a function stepw as follows via tail-recursion:

stepw(s) ,

{
s if halted(s)
stepw(step(s)) otherwise

The function induces the following equivalence relation ↪→ on states:5

(s0 ↪→ s) , (stepw(s0) = stepw(s))

The relation ↪→ has nice algebraic properties; for instance, the following
formula is a theorem:

∀s : s ↪→ step(s)

Let modify(s) be the desired modification to s after execution of the
program: if the program is a JVM method computing the factorial, then
modify(s) might involve popping the current call frame off the call stack
and storing the factorial of the argument involved in the invocation at
the appropriate local of the call frame of the caller. Manolios and Moore
use the following notion to relate s with modify(s).

∀s : pre(s)⇒ (s ↪→ modify(s)) (1)

Obligation 1 seems apparently reasonable, and substantial automation
can be achieved in proving this statement for operationally modeled
sequential programs. In particular, using the theorem ∀s : s ↪→ step(s)
and the fact that ↪→ is transitive, the statements can be proven and
composed by symbolic simulation. However, does the above theorem
imply that the program under inspection is (partially) correct in gen-
eral? The answer is “no”. To see this, first consider a program that
never terminates. Such a program is, by definition, partially correct.

4 This criticism has been rarely written in print, but usually expressed in confer-
ence question-answer sessions. However, there has been a nagging feeling that clock
functions require more work. The absence of published criticism and the presence
of this “nagging feeling” have both been confirmed by an extensive literature search
and private communications with some of the authors of other theorem provers.

5 The actual symbol they use is == instead of ↪→. We use the latter to avoid
confusion between this relation and equality.

proofs.tex; 5/01/2008; 22:12; p.25



26

However, note that for any s such that no terminating state is reach-
able from s, the return value of stepw(s) is not defined by the above
defining equation; thus, obligation 1 cannot be established. A stronger
objection is that s ↪→ s′ may be proved for any two states that reach
the same halted state; there is no requirement or implication that s′ is
reachable from s. Consider a pathological machine in which all halting
computations collapse to the same final state. Then, for any two states
s and s′ poised to execute two (perhaps completely different) halting
programs, we can prove s ↪→ s′. Thus any two halting programs are
“equivalent”, and any terminating program can be proven “correct” in
the sense of being equivalent to any desired halting specification.

The lesson from above is that it is imperative to validate proof
strategies against a formal, clearly specified notion of correctness. We
should note that the machine used in Manolios and Moore (2003) was
not pathological, and the programs analyzed by Manolios and Moore
can also be proven correct with respect to our formalization.

Finally, an important consequence of our results is the possibility
of mixing strategies for verifying different program components. One
strategy might be easier or more intuitive than the other in a practical
scenario. For example, consider two procedures: (1) initialization of a
Binary Search Tree (BST), and (2) insertion of a sequence of elements
in an already initialized BST. Assume that in either case the postcon-
dition specifies that a BST structure is produced. A typical approach
for verifying (1) is to define a clock that specifies the number of steps
required by the initialization procedure, and then prove the result by
symbolic simulation; definition of a stepwise invariant is cumbersome,
requiring a precise characterization of the portion of the tree initialized
upon execution of each instruction. On the other hand, a stepwise
invariant proof might be more natural for verifying (2), by showing
that each insertion preserves the tree structure. As a broader example,
note that clock functions have been widely used in ACL2 for program
verification. On the other hand, as mentioned before, we have developed
a compositional verification framework emulating inductive assertions
via symbolic simulation; as mentioned in the preceding section, that
framework has been used to verify non-trivial programs with substan-
tial automation. With the formal proofs of correspondence and our
macros, we can now use that framework while reusing the previous
ACL2 proofs based on clock functions.

proofs.tex; 5/01/2008; 22:12; p.26



27

8. Summary and Conclusion

We have formalized three proof strategies commonly employed in me-
chanical verification of programs modeled using operational semantics.
We have shown how to mechanically derive the proof obligations for
each strategy (in a logic allowing first-order quantification and arbitrary
tail-recursive definitions) from any proof of correctness of a program.
The results hold for both partial and total correctness. We have im-
plemented macros to switch proof strategies in ACL2. We have also
illustrated how it is possible, in absence of such a formal framework,
to develop apparently reasonable but flawed proof strategies.

We do not advocate one proof strategy over another. Our goal is to
enable practitioners working in program verification to go “back and
forth” between the different strategies; thus one can focus on reasoning
about a program component using the strategy most suitable, inde-
pendent of other components. This ability is particularly important in
theorem proving, where the user needs to guide the theorem prover
during a proof search. Our results and macros free the user from ad-
hering to a monolithic strategy for any one program component solely
for compatibility with proofs done for other components.

Our results also indicate that the complications in program verifica-
tion arise not from the specific proof styles used but from the inherent
complexity involved in reasoning. Note that if there exists any proof of
correctness of a program, we can mechanically generate the obligations
for each proof strategy. Thus the core creative reasoning involved does
not change by simply switching from one strategy to another. On a
positive note, this indicates that techniques for automating code proofs
in one strategy are also perhaps likely to carry over to the others.

Finally, our work emphasizes the utility of quantification in an in-
ductive theorem prover, in particular ACL2. While ACL2 has always
supported full first-order quantification via Skolemization, its expres-
sive power has gone largely unnoticed among the users, the focus being
on constructive, recursive definitions. The chief reasons for this focus
are that recursive definitions are amenable to efficient executability
and play to the strength of the theorem prover in doing automatic
well-founded induction. These are certainly useful qualities. However,
we have often found it instructive to be able to reason about a generic
model of which different concrete systems are instantiations. Quanti-
fiers are useful for reasoning about such generic models. We contend
that the principal reason why the connections between the different
proof strategies discussed here has gone unnoticed so far in the ACL2
community, in spite of each strategy being used extensively, is the
disinclination of the ACL2 users to reason in terms of generic models

proofs.tex; 5/01/2008; 22:12; p.27



28

and quantified predicates. We have also found quantification useful in
other circumstances, for example in formalizing weakest preconditions
and in reasoning about pipelined machines (Ray and Hunt, 2004).

Acknowledgements

This material is based upon work partially supported by DARPA and
the National Science Foundation under Grant No. CNS-0429591 and by
the National Science Foundation under Grant No. ISS-0417413. Matt
Kaufmann has provided numerous insights, including a comment that
started us on track for the results of this paper in the first place.
Additionally, Kaufmann and Robert Krug read an earlier draft of the
paper and made several useful suggestions. Larry Paulson confirmed the
previously existing nagging doubts about the complexity of clock func-
tion proofs. Finally, the anonymous referees provided several expository
comments that have improved the quality of this article.

References

Apt, K. R.: 1981, ‘Ten Years of Hoare’s Logic: A Survey — Part I’. ACM
Transactions on Programming Languages and Systems (ACM TOPLAS) 3(4),
431–483.

Barnes, J.: 2003, High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley.

Bertot, Y. and P. Castéran: 2004, Interactive Theorem Proving and Program
Development. Springer-Verlag.

Bevier, W. R.: 1987, ‘A Verified Operating System Kernel’. Ph.D. thesis,
Department of Computer Sciences, The University of Texas at Austin.

Bevier, W. R., W. A. Hunt, Jr., J. S. Moore, and W. D. Young: 1989, ‘An Approach
to System Verification’. Journal of Automated Reasoning 5(4), 411–428.

Boyer, R. S., D. Goldshlag, M. Kaufmann, and J. S. Moore: 1991, ‘Functional In-
stantiation in First Order Logic’. In: V. Lifschitz (ed.): Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy. pp.
7–26.

Boyer, R. S., M. Kaufmann, and J. S. Moore: 1995, ‘The Boyer-Moore Theorem
Prover and Its Interactive Enhancement’. Computers and Mathematics with
Applications 29(2), 27–62.

Boyer, R. S. and J. S. Moore: 1979, A Computational Logic. New York, NY:
Academic Press.

Boyer, R. S. and J. S. Moore: 1996, ‘Mechanized Formal Reasoning about Programs
and Computing Machines’. In: R. Veroff (ed.): Automated Reasoning and Its
Applications: Essays in Honor of Larry Wos. pp. 141–176.

Brock, B. and W. A. Hunt, Jr.: 1999, ‘Formal Analysis of the Motorola CAP DSP’.
In: Industrial-Strength Formal Methods. Springer-Verlag.

proofs.tex; 5/01/2008; 22:12; p.28



29

Church, A. and S. C. Kleene: 1937, ‘Formal Definitions in the Theory of Ordinal
Numbers’. Fundamenta Mathematicae 28, 11–21.

Clarke, E. M.: 1976, ‘Completeness and Incompleteness of Hoare-like Axiom
Systems’. Ph.D. thesis, Cornell University.

Clint, M.: 1973, ‘Program Proving: Coroutines’. Acta Informatica 2, 50–63.
Clint, M. and C. A. R. Hoare: 1971, ‘Program Proving: Jumps and Functions’. Acta

Informatica 1, 214–224.
Colby, C., P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline: 2000, ‘A Certify-

ing Compiler for Java’. In: ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDI 2000). pp. 95–107.

Cook, S. A.: 1978, ‘Soundness and Completeness of an Axiom System for Program
Verification’. SIAM Journal of Computing 7(1), 70–90.

de Bakker, J. W.: 1980, Mathematical Theory of Program Correctness. Prentice-Hall.
Detlefs, D. L., K. R. M. Leino, G. Nelson, and J. B. Saxe: 1998, ‘Extended Static

Checking for Java’. Technical Report 159, Compaq Systems Research Center.
Dijkstra, E. W.: 1975, ‘Guarded Commands, Non-determinacy and a Calculus for

Derivation of Programs’. Language Hierarchies and Interfaces pp. 111–124.
Dijkstra, E. W.: 1978, A Discipline of Programming. Prentice-Hall.
Flatau, A. D.: 1992, ‘A Verified Language Implementation of an Applicative Lan-

guage with Dynamic Storage Allocation’. Ph.D. thesis, Department of Computer
Sciences, The University of Texas at Austin.

Floyd, R.: 1967, ‘Assigning Meanings to Programs’. In: Mathematical Aspects of
Computer Science, Proceedings of Symposia in Applied Mathematcs, Vol. XIX.
Providence, Rhode Island, pp. 19–32.

Fox, A. C. J.: 2003, ‘Formal Specification and Verification of ARM6’. In: D. A.
basin and B. Wolff (eds.): Proceedings of the 16th International Conference on
Theorem Proving in Higher-Order Logics (TPHOLS 2003), Vol. 2758 of LNCS.
pp. 25–40.

Gloess, P. Y.: 1999, ‘Imperative Program Verification in PVS’. Technical re-
port, École Nationale Supérieure Électronique, Informatique et Radiocommu-
nications de bordeaux. See URL http://dept-info.labri.u.bordeaux.fr/-

imperative/index.html.
Goldstein, H. H. and J. von Neumann: 1961, ‘Planning and Coding Problems for

an Electronic Computing Instrument’. In: John von Neumann, Collected Works,
Volume V.

Gordon, M. J. C. and T. F. Melham (eds.): 1993, Introduction to HOL: A Theorem-
Proving Environment for Higher-Order Logic. Cambridge University Press.

Greve, D., M. Wilding, and D. Hardin: 2000, ‘High-Speed, Analyzable Simula-
tors’. In: M. Kaufmann, P. Manolios, and J. S. Moore (eds.): Computer-Aided
Reasoning: ACL2 Case Studies. Boston, MA, pp. 89–106.

Hamon, G. and J. Rushby: 2004, ‘An Operational Semantics for Stateflow’. In:
M. Wermelinger and T. Margaria (eds.): Proceedings of the 7th International
Conference on Fundamental Approaches to Software Engineering (FASE 2004),
Vol. 2984 of LNCS. pp. 229–243.

Harrison, J.: 1998, ‘Formalizing Dijkstra’. In: J. Grundy and M. Newer (eds.):
Proceedings of the 11th International Conference on Theorem Proving in Higher
Order Logics (TPHOLS 1998), Vol. 1479 of LNCS. pp. 171–188.

Hoare, C. A. R.: 1969, ‘An Axiomatic Basis for Computer Programming’. Commu-
nications of the ACM 12(10), 576–583.

Hoare, C. A. R.: 1972, ‘Proof of Correctness of Data Representations’. Acta
Informatica 1, 271–281.

proofs.tex; 5/01/2008; 22:12; p.29



30

Homeier, P. and D. Martin: 1995, ‘A Mechanically Verified Verification Condition
Generator’. The Computer Journal 38(2), 131–141.

Hunt, Jr., W. A.: 1994, FM8501: A Verified Microprocessor, Vol. 795 of LNAI.
Springer-Verlag.

Hunt, Jr., W. A. and B. Brock: 1992, ‘A Formal HDL and Its Use in the FM9001 Ver-
ification’. In: C. A. R. Hoare and M. J. C. Gordon (eds.): Mechanized Reasoning
and Hardware Design. Englewood Cliffs, NJ, pp. 35–48.

Kaufmann, M., P. Manolios, and J. S. Moore: 2000, Computer-Aided Reasoning: An
Approach. Boston, MA: Kluwer Academic Publishers.

Kaufmann, M. and J. S. Moore: 2006, ‘ACL2 home page’. See URL http://-

www.cs.utexas.edu/users/moore/acl2.
King, J. C.: 1969, ‘A Program Verifier’. Ph.D. thesis, Carnegie-Melon University.
King, S., J. Hammond, R. Chapman, and A. Pryor: 2000, ‘Is Proof More Cost-

Effective Than Testing?’. IEEE Transactions on Software Engineering 26(8),
675–686.

Liu, H. and J. S. Moore: 2004, ‘Java Program Verification via a JVM Deep Em-
bedding in ACL2’. In: K. Slind, A. Bunker, and G. Gopalakrishnan (eds.):
Proceedings of the 17th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs 2004), Vol. 3233 of LNCS. Park City, Utah, pp. 184–200.

Liu, H. and J. S. Moore: 2005, ‘Executable JVM model for analytical reasoning: A
study’. Science of Computer Programming 57(3), 253–274.

Manna, Z.: 1969, ‘The Correctness of Programs’. Journal of Computer and Systems
Sciences 3(2), 119–127.

Manna, Z. and A. Pnueli: 1995, Temporal Verification of Reactive Systems: Safety.
Springer-Verlag.

Manolios, P. and J. S. Moore: 2003, ‘Partial Functions in ACL2’. Journal of
Automated Reasoning 31(2), 107–127.

Manolios, P. and D. Vroon: 2003, ‘Algorithms for Ordinal Arithmetic’. In: F. Baader
(ed.): Proceedings of the 19th International Conference on Automated Deduction
(CADE 2003), Vol. 2741 of LNAI. Miami, FL, pp. 243–257.

Matthews, J., J. S. Moore, S. Ray, and D. Vroon: 2006, ‘Verification Condition
Generation Via Theorem Proving’. In: M. Hermann and A. Voronkov (eds.):
Proceedings of the 13th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2006), Vol. 4246 of LNCS. pp.
362–376.

Matthews, J. and D. Vroon: 2004, ‘Partial Clock Functions in ACL2’. In: M.
Kaufmann and J. S. Moore (eds.): 5th International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 2004). Austin, TX.

McCarthy, J.: 1962, ‘Towards a Mathematical Science of Computation’. In:
Proceedings of the Information Processing Congress, Vol. 62. pp. 21–28.

Mehta, F. and T. Nipkow: 2003, ‘Proving Pointer Programs in Higher Order
Logic’. In: F. Baader (ed.): Proceedings of the 19th International Conference
on Automated Deduction (CADE 2003), Vol. 2741 of LNAI. pp. 121–135.

Moore, J. S.: 1996, Piton: A Mechanically Verified Assembly Language. Kluwer
Academic Publishers.

Moore, J. S.: 2003a, ‘Inductive Assertions and Operational Semantics’. In: D. Geist
(ed.): Proceedings of the 12th International Conference on Correct Hardware
Design and Verification Methods, Vol. 2860 of LNCS. pp. 289–303.

Moore, J. S.: 2003b, ‘Proving Theorems about Java and the JVM with ACL2’. In: M.
Broy and M. Pizka (eds.): Models, Algebras, and Logic of Engineering Software.
pp. 227–290.

proofs.tex; 5/01/2008; 22:12; p.30



31

Necula, G. C.: 1997, ‘Proof-Carrying Code’. In: Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 1997). pp. 106–119.

Norrish, M.: 1998, ‘C Formalised in HOL’. Ph.D. thesis, University of Cambridge.
Oppen, D. C. and S. A. Cook: 1975, ‘Proving Assertions about Programs that

Manipulate Data Structures’. In: Proceedings of the 7th Annual ACM Symposium
on Theory of Computing (STOC 1975). pp. 107–116.

Ortner, V. and N. Schirmer: 2005, ‘Verification of BDD Normalization’. In: J.
Hurd and T. Melham (eds.): Proceedings of the 16th International Conference on
Theorem Proving in Higher-Order Logics (TPHOLS 2005), Vol. 3603 of LNCS.
pp. 261–277.

Owicki, S. S. and D. Gries: 1976, ‘Verifying Properties of Parallel Programs: An
Axiomatic Approach’. Communications of the ACM 19(5), 279–285.

Owre, S., J. M. Rushby, and N. Shankar: 1992, ‘PVS: A Prototype Verification
System’. In: D. Kapoor (ed.): 11th International Conference on Automated
Deduction (CADE), Vol. 607 of LNAI. pp. 748–752.

Ray, S. and W. A. Hunt, Jr.: 2004, ‘Deductive Verification of Pipelined Machines
Using First-Order Quantification’. In: R. Alur and D. A. Peled (eds.): Proceed-
ings of the 16th International Conference on Computer-Aided Verification (CAV
2004), Vol. 3114 of LNCS. Boston, MA, pp. 31–43.

Ray, S. and J. S. Moore: 2004, ‘Proof Styles in Operational Semantics’. In: A. J.
Hu and A. K. Martin (eds.): Proceedings of the 5th International Conference on
Formal Methods in Computer-Aided Design (FMCAD 2004), Vol. 3312 of LNCS.
Austin, TX, pp. 67–81.

Sawada, J. and W. A. Hunt, Jr.: 1997, ‘Trace Table Based Approach for Pipelined
Microprocessor Verification’. In: O. Grumberg (ed.): Proceedings of the 9th In-
ternational Conference on Computer-Aided Verification (CAV 1997), Vol. 1254
of LNCS. pp. 364–375.

Schirmer, N.: 2005, ‘A Verification Environment for Sequential Imperative Programs
in Isabelle/HOL’. In: F. Baader and A. Voronkov (eds.): Proceedings of the 11th
International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2004), Vol. 3452 of LNAI. pp. 398–414.

Shankar, N.: 1997, ‘Machine-Assisted Verification Using Theorem Proving and
Model Checking’. In: M. Broy and B. Schieder (eds.): Mathematical Methods in
Program Development, Vol. 158 of NATO ASI Series F: Computer and Systems
Science. Springer-Verlag, pp. 499–528.

Sokolowski, S.: 1977, ‘Axioms for Total Correctness’. Acta Informatica 9, 61–71.
Strecker, M.: 2002, ‘Formal Verification of a Java Compiler in Isabelle’. In: A.

Voronkov (ed.): Proeedings of the 18th International Conference on Automated
Deduction (CADE 2002), Vol. 2392 of LNCS. pp. 63–77.

Turing, A. M.: 1949, ‘Checking a Large Routine’. In: Report of a Conference on High
Speed Automatic Calculating Machine. University Mathematical Laboratory,
Cambridge, England, pp. 67–69.

Wand, M.: 1978, ‘A New Incompleteness Result for Hoare’s System’. Journal of the
ACM 25(1), 168–175.

Wilding, M.: 1993, ‘A Mechanically Verified Application for a Mechanically Verified
Environment’. In: C. Courcoubetis (ed.): Proceedings of the 5th International
Conference on Computer-Aided Verification (CAV 1993), Vol. 697 of LNCS. pp.
268–279.

Wilding, M.: 1997, ‘Robust Computer System Proofs in PVS’. In: C. M. Holloway
and K. J. Hayhurst (eds.): 4th NASA Langley Formal Methods Workshop.

proofs.tex; 5/01/2008; 22:12; p.31



32

Young, W. D.: 1988, ‘A Verified Code Generator for a Subset of Gypsy’. Technical
Report 33, Computational Logic Inc.

Yu, Y.: 1992, ‘Automated Proofs of Object Code for a Widely Used Microprocessor’.
Ph.D. thesis, Department of Computer Sciences, The University of Texas at
Austin.

proofs.tex; 5/01/2008; 22:12; p.32


