
EEL-4736/EEL-5737 Principles of Computer System Design
Syllabus – Fall 2018

Text: “Principles of Computer System Design”, Jerome E. Saltzer and M. Frans Kaashoek, ISBN
9180123749574, Morgan Kaufmann 2009. Readings will also be based on a collection of
relevant technical papers.

Introduction: The design of hardware and software in computer systems ranging from personal devices to
large-scale distributed, networked computers is an increasingly complex undertaking and
requires understanding not only of individual sub-systems, such as the micro-processor, but
also the interactions among sub-systems. This class provides a broad introduction to the main
principles and abstractions for engineering computer systems, and in-depth studies of their use
on computer systems across a variety of designs, be it an operating system, a client/server
application, a database server, or a fault-tolerant disk cluster.

Prerequisites: Digital design (EEL4712 or equivalent); introduction to programming or data
structures/algorithms (EEL4834 or equivalent). Programming in a high-level language.

Computer usage: Student personal computers will be used in assignments. Students will be expected to use the
Linux operating system, either natively on their computers, or within a virtual machine (VM).

Assignments: Homeworks and a project will be assigned in this class. The project entails an exploration of a
topic related to the design of a computer system through implementation of a prototype. The
assignments and project will require significant software programming using the Python high-
level language.

Exams: There will be several in-class quizzes, two midterms and one final exam in this class. An
approximate breakdown of the grade weights is 40% for homework/project assignments, 60%
for exams. Quiz grades will not be used in computing your final grades - quizzes are going to
be used to help you self-assess your class knowledge, and practice for exams.

Course topics:

 Overview of computer systems: sources of complexity and design principles (chapter 1)

 Week 1: Lecture/slide set 1: systems and complexity

 Modularity, Abstraction, Layering, Hierarchy

 Elements of computer system organization (chapter 1)

 Week 1: Lecture/slide set 2: fundamental abstractions

 Memory, interpreters, communication links

 Layering and naming in computer systems (chapter 2)

 Week 2: Lecture/slide set 3: naming introduction

 Week 3: Lecture/slide set 4: names and layers

 Week 3: Lecture/slide set 5: UNIX file system case study

 Enforcing modularity (chapters 4 and 5)

 Week 4: Lecture/slide set 6: client/service modularity

 Week 5: Lecture/slide set 7: case study – network file system

 Week 5: Lecture/slide set 8: virtualization abstractions

 Week 6: Lecture/slide set 9: virtual links

 Week 6: Lecture/slide set 10: memory modularity

 Week 7: Lecture/slide set 11: virtual memory

 Week 7: Lecture/slide set 12: virtual processor threads

 Designing for performance (chapter 6)

 Week 8: Lecture/slide set 13: designing for performance

 Exploiting workload properties, concurrency; addressing bottlenecks

 Week 9: Lecture/slide set 14: scheduling

 The network as a system and as a system component (chapter 7)

 Week 10: Lecture/slide set 15: network properties

 Week 10: Lecture/slide set 16: network layers

 Week 11: Lecture/slide set 17: network case studies: ARP, IP, Ethernet

 Fault tolerance (chapter 8)

 Week 11: Lecture/slide set 18: fault tolerance

 Concepts and metrics

 Week 12: Lecture/slide set 19: redundancy

 Systematically applying redundancy; software and data

 Atomicity (chapter 9)

 Week 13: Lecture/slide set 20: atomicity

 Week 14: Lecture/slide set 21: atomicity logs

 Week 15: Lecture/slide set 22: atomicity and locks

	Course topics:

