Course Number & Name: EEE 4310 and EEE5322 - Digital Integrated Circuits Design

Credits and Contact Hours: 3 crs; 3 classes per week of 50 minutes each

Instructor’s or Course Coordinator’s Name: Dr. Scott E. Thompson

Contact info
Prof. Scott Thompson
535 Engineering Bldg
846-0320
Office hours: M W F 6th period days of live class
Plus e-learning discussion board (https://lss.at.ufl.edu/)
(plus additional office hours arranged via email thompson@ece.ufl.edu)

Teaching assistants

TA Yingjie Chen (chenyingjie@ufl.edu)
TA Xiaodong Xu (xu1992@ufl.edu)
TA Office hours: (email to arrange)

Textbook Title, Author, and Year:

Title - Introduction to Microelectronic Fabrication (Required)
Author - Richard C. Jaeger
dISBN Number - 0-201-44494-7

Title - Digital Integrated Circuits, A Design Perspective (Required)
Author - Jan. M. Rabaey, A. Chandrakasan, and B.Nikolic

Computer and Software required: Workstations with CADENCE Design system on campus, off-campus can use XWindows or X-terminal on a high-speed internet link to UF Campus Computers, or can use equivalent IC design software

a. Supplemental Material:

Specific Course Information
a. **Catalog Description:** Fabrication, Layout, Analysis and design of digital and circuits using MOS Transistors

b. **Prerequisites or Co-requisites:** EEL 3396, EEL 3308
c. **Required, Elective, or Selected Elective (Table 5-1):**

Specific Goals for the Course

a. **Specific Outcomes of Instruction:**

 This course focuses on analysis and design of modern digital circuits. Silicon technology and transistors are introduced and described from a digital point of view, and the performance of various circuits is derived and estimated. CMOS digital circuits will be designed and analyzed. Students will have a semester long team SRAM chip design project using commercial software Cadance. Project will cover advanced topics such as manufacturing variations.

b. **Explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by this course:**

 EE2, a, c, e, i, k

Topics to Be Coverer

Week 1: Moore’s Law, History and Future of Computing, Chipworks tear down of a mobile computer (iPhone and iPad), Jaeger Chapter 1.

Week 2: Design rules, Chap. 2.1, 2.2 and 2.3 of Rabaey, 1.2, 1.3.1

Week 3: Contacts and Interconnects Chap. 7 Jaeger and handouts. MOS Process Integration Chap. 9 of Jaeger and State of the art CMOS planar and FinFET SOC process flow: 28nm, 20nm, 14nm, 10nm Logic Technologies and advanced layout issues: Optical Proximity correction and Restrictive Design Rules

Week 4-5: What is VLSI, **Cadence Design Training**, Statistics Review, and Introduction to micro fabrication with emphasis on process variation Chap. 5.1, 5.2, 5.3, 5.4 of Jaeger, plus handouts and Chipworks reverse engineering reports

Week 6-7: CMOS Logic, DRAM, NAND, CMOS image sensor chips fabrication, bit cell or pixel cell, and array architecture Chap. 8.7 of Jaeger and Chapter 2.2 Rabaey plus handouts

Week 8-9: Layout Layers and X-sections Design Rules, Resistance, Capacitance, MOSFET Chap. 4.1 to 4.3 and Chap. 3.3 of Rabaey and 9.2, 9.3 Jaeger

Week 10: MOS Transistors, CMOS Inverters, Chap. 3.3 and Chap. 5 of Rabaey

Week 11: CMOS Inverters, Chap. 5 of Rabaey

Week 12: Combination Logic, Compound Gates, Chap. 6 of Rabaey
Week 13: Transmission Gates, Memory, Chap. 6 and Chap. 12 of Rabaey

Week 14: Memory, Pseudo NMOS, Pass Trans. Logic, Chap. 6 of Rabaey

Week 14: Pre-charge Logic, and Dynamic Logic, Chap. 6 of Rabaey

Week 15: Domino Logic, Logic Comparison, Noise Chap. 6 of Rabaey

- Grading:

 Class exams

 100 Points Test 1 Friday Sept. 20
 100 Points Test 2 Wednesday Oct. 23
 150 Points Test 3 Monday Nov. 18
 250 Points Comprehensive Final as scheduled by college (12:30-2:30 Thursday Dec. 11)

 Cadences assignment 1 (25 points)

 Group SRAM Design project (150 points) Final Class Project Due Dec 4 (midnight)

 Homework 10 points per assignment

- Test and projects and homework different for EEL 4310 and EEL5322

- No exam make-up unless valid excuse. All valid excuses must be approved by the Professor

 - Final Grading Scale

 - \[\geq 90\% \rightarrow A; \quad \geq 86.67\% \rightarrow A-; \quad \geq 83.33\% \rightarrow B+; \quad \geq 80\% \rightarrow B; \quad \geq 76.67\% \rightarrow B-; \]

 \[\geq 73.33\% \rightarrow C+; \quad \geq 70\% \rightarrow C; \quad \geq 66.67\% \rightarrow C-; \quad \geq 63.33\% \rightarrow D+; \quad \geq 60\% \rightarrow D; \]

 \[\geq 56.67\% \rightarrow D-; \quad < 56.67\% \rightarrow E \]

- Attendance: Due to quantity and research nature of material, it is important to make every attempt to attend class or watch all class lectures (when possible).