EEE4222-1E57(12086) - Resonant Mems

Resonant MEMS

EEE 4222 / EEL 5225

Class Periods:  T-TR, Periods 4-5 (10:40 am – 12:35 pm)

Location:  BEN 0330

Academic Term:  Spring 2020

Instructor:

- Name: Roozbeh Tabrizian
- Email Address: rtabrizian@ufl.edu
- Office Phone Number: 352-846-3017
- Office Hours: Wednesday, 4:00 pm – 5:00 pm, LAR 217

Course Description

Fundamentals of resonant micro-electro-mechanical systems (Resonant MEMS) and their applications. Credits: 3.

Course Pre-Requisites / Co-Requisites

Introduction to Signals and Systems (EEL 3135); Circuits 2 (EEL 3112); Elementary Ordinary Differential Equations (MAP 2302); or per instructor’s permission.

Course Objectives

Learn the basics of MEMS resonant devices: their principles of operation, theoretical limits of performance and applications. Introduce resonator-based frequency references, physical sensors and signal processors. Design micro-resonators to meet desired needs and specifications.

These objectives will be accomplished through:

1. Introductory analysis of Resonant MEMS through basic analytical models.
2. Discussion on the sensitivity of Resonant MEMS to physical perturbations.
3. Review of Resonant MEMS applications in consumer electronic systems.
4. Introduction to a finite element simulation software for mixed-domain modeling of Resonant MEMS.

**Required Textbooks and Software**

The course notes are developed by the instructor.

- **Title:** Resonant MEMS: Fundamentals, Implementation and Application
- **Author:** Oliver Brand, et. al.
- **Publication date, edition, and publisher:** 1st Ed., Wiley-VCH, 2015
- **ISBN number:** 978-3-527-33545-9

Software: COMSOL Multiphysics (Note: The instructor provides access of students, in few groups, to the licenses purchased by IMG.)

**Recommended Materials**

Books:


Primary Journals:

*Applied Physics Letters* (AIP)

*Trans. On Ultrasonics, Ferroelectrics and Frequency Control* (IEEE/UFFC)

1. *Microelectromechanical Systems* (IEEE/ASME)

*Trans. On Electron Devices* (IEEE/EDS)

*Sensors and Actuators* (Elsevier)

Major Conferences:

Transducers ‘XX, Int. Conf. on Solid-State Sensors and Actuators, odd-numbered years since 1983, proceedings available from IEEE (US meetings), Elsevier (European meetings), IEE Japan (Japanese meetings).

IEEE MEMS ‘XX, annual since 1989, proceedings available from IEEE.

IEEE IFCS ‘XX, annual since 1946, proceedings available from IEEE.

IEEE Sensors ‘XX, annual since 2002, proceedings available from IEEE.
Hilton Head ‘XX, Solid-State Sensors and Actuators Workshop, Hilton Head, SC, even-numbered years since 1984, proceedings available from Transducer Research Foundation.

Euroensors ‘XX, annual since 1987, proceedings published in special issues of Sensors and Actuators.

Informative Websites:

www.kaajakari.net/~ville/research/tutorials/tutorials.shtml (Links to an external site.) (MEMS tutorials)

www.memsjournal.com (Links to an external site.) Premiere online journal of MEMS-related news

www.memsnet.org (Links to an external site.) General MEMS and Nanotechnology Information

**Course Schedule**

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Due Dates (estimated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course overview, Intro to resonant MEMS devices, Damped oscillation of microstructures</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Integrated transducers and electromechanical coupling efficiency, Lumped element modeling</td>
<td>HW1</td>
</tr>
<tr>
<td>3</td>
<td>Performance sensitivity of MEMS resonators to ambient variables: Temperature, Pressure, Viscosity</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Compensation and tuning of MEMS resonators</td>
<td>HW2</td>
</tr>
<tr>
<td>5</td>
<td>Dissipation mechanisms and quality factor</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Finite element modeling of MEMS resonators</td>
<td>HW3</td>
</tr>
<tr>
<td>7</td>
<td>Resonant MEMS in timing &amp; frequency references</td>
<td></td>
</tr>
</tbody>
</table>
8  Resonant MEMS for physical sensing: Environmental sensors, Gravimetric sensors  HW4

9  Resonant MEMS for signal processing: Electrically and mechanically coupled VHF filters

10  Resonant MEMS for signal processing: Acoustically coupled UHF filters, Resonant RF switches  HW5

11  Power handling and non-linearity in MEMS resonators

12  Acoustic phonons and dispersion curves  HW5

13  Phonon traps and evanescent waves  HW7

14  Multi-mode phonon traps

15  Combinatorial phononic sensors  HW8

**Attendance Policy, Class Expectations, and Make-Up Policy**

Students are expected to attend class lectures and arrive on time. Please turn off cell-phones, pagers, and other electronic devices.

**Evaluation of Grades**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Per. of Final Grade (5225)</th>
<th>Per. of Final Grade (4222)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Homework Sets (8)</td>
<td>20%</td>
<td>35%</td>
</tr>
</tbody>
</table>
Exam 1 20% 15%
Exam 2 20% 15%
Exam 3 20% 15%
TOTAL 100% 100%

Grading Policy

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100</td>
<td>A</td>
<td>4.00</td>
</tr>
<tr>
<td>87 - 89</td>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>83 - 86</td>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>80 - 82</td>
<td>B</td>
<td>3.00</td>
</tr>
<tr>
<td>77 - 79</td>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>73 - 76</td>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>70 - 72</td>
<td>C</td>
<td>2.00</td>
</tr>
<tr>
<td>67 - 69</td>
<td>C-</td>
<td>1.67</td>
</tr>
<tr>
<td>63 - 66</td>
<td>D+</td>
<td>1.33</td>
</tr>
<tr>
<td>60 - 62</td>
<td>D</td>
<td>1.00</td>
</tr>
</tbody>
</table>
In order to graduate, graduate students must have an overall GPA and a major GPA of 3.0 or better (B or better). Note: A “B-” average is equivalent to a GPA of 2.67, and therefore, it does not satisfy this graduation requirement.

More information on UF grading policy may be found at: http://gradcatalog.ufl.edu/content.php?catoid=10&navoid=2020

Students Requiring Accommodations

Students with disabilities requesting accommodations should first register with the Disability Resource Center (352-392-8565, https://www.dso.ufl.edu/drc) by providing appropriate documentation. Once registered, students will receive an accommodation letter which must be presented to the instructor when requesting accommodation. Students with disabilities should follow this procedure as early as possible in the semester.

Course Evaluation

Students are expected to provide feedback on the quality of instruction in this course by completing online evaluations at https://evaluations.ufl.edu/evals. Evaluations are typically open during the last two or three weeks of the semester, but students will be given specific times when they are open. Summary results of these assessments are available to students at https://evaluations.ufl.edu/results/.

University Honesty Policy

UF students are bound by The Honor Pledge which states, “We, the members of the University of Florida community, pledge to hold ourselves and our peers to the highest standards of honor and integrity by abiding by the Honor Code. On all work submitted for credit by students at the University of Florida, the following pledge is either required or implied: “On my honor, I have neither given nor received unauthorized aid in doing this assignment.” The Honor Code (https://www.dso.ufl.edu/sccr/process/student-conduct-honor-code/) specifies a number of behaviors that are in violation of this code.
and the possible sanctions. Furthermore, you are obligated to report any condition that facilitates academic misconduct to appropriate personnel. If you have any questions or concerns, please consult with the instructor or TAs in this class.

**Software Use**

All faculty, staff and student of the University are required and expected to obey the laws and legal agreements governing software use. Failure to do so can lead to monetary damages and/or criminal penalties for the individual violator. Because such violations are also against University policies and rules, disciplinary action will be taken as appropriate. We, the members of the University of Florida community, pledge to uphold ourselves and our peers to the highest standards of honesty and integrity.

**Campus Resources:**

- **Health and Wellness**

**U Matter, We Care:**

If you or a friend is in distress, please contact umatter@ufl.edu or 352-392-1575 so that a team member can reach out to the student.

**Counseling and Wellness Center:** [http://www.counseling.ufl.edu/cwc (Links to an external site.)](http://www.counseling.ufl.edu/cwc), and 392-1575; and the University Police Department: 392-1111 or 9-1-1 for emergencies.

**Sexual Assault Recovery Services (SARS)**

Student Health Care Center, 392-1161.

**University Police Department** at 392-1111 (or 9-1-1 for emergencies), or [http://www.police.ufl.edu/ (Links to an external site.)](http://www.police.ufl.edu/).

**Academic Resources**
E-learning technical support, 352-392-4357 (select option 2) or e-mail to Learning-support@ufl.edu. https://lss.at.ufl.edu/help.shtml (Links to an external site.).

Career Resource Center, Reitz Union, 392-1601. Career assistance and counseling. https://www.crc.ufl.edu/ (Links to an external site.).

Library Support, http://cms.uflib.ufl.edu/ask (Links to an external site.). Various ways to receive assistance with respect to using the libraries or finding resources.

Teaching Center, Broward Hall, 392-2010 or 392-6420. General study skills and tutoring. https://teachingcenter.ufl.edu/ (Links to an external site.).

Writing Studio, 302 Tigert Hall, 846-1138. Help brainstorming, formatting, and writing papers. https://writing.ufl.edu/writing-studio/ (Links to an external site.).

Student Complaints
Campus: https://www.dso.ufl.edu/documents/UF_Complaints_policy.pdf (Links to an external site.).

On-Line Students Complaints: http://www.distance.ufl.edu/student-complaint-process (Links to an external site.).